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The development of next-generation TeV+ electron accelerators will require either im-

mense footprints based on conventional acceleraton techniques or the development of new

higher–gradient acceleration methods. One possible alternative is beam-driven acceleration

in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a high-

charge bunch passes through a DLW and can excite gradients on the order of GV/m. An

important characteristic of this acceleration class is the transformer ratio which characterizes

the energy transfer of the scheme. This dissertation discusses alternative methods to improve

the transformer ratio for beam-driven acceleration and also considers the use of DLWs for

beam manipulation at low energy.
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CHAPTER 1

INTRODUCTION

The development of particle accelerators has led to an incredible wave of advancements

across many fields in science and technology. From the first accelerators developed by John

Cockroft and Ernest Walton in 1930, which led to the Nobel Prize (1951) winning exper-

iment for splitting the atom, to the recent discovery of the Higgs boson in Large Hardon

Colliders (LHC) Run #1, particle accelerators have been essential to the development of

fundamental physics and ultimately, the Standard Model. In particle physics we are gen-

erally interested in probing higher-energy mechanisms which require correspondingly large

collision energies; a modern collider like the LHC has a design center-of-mass collision energy

of 14 TeV and is quite expensive; a recent estimate put the total cost of finding the Higgs

boson to ∼ $13.25BN (see [1, 2, 3] for more detailed costs pertaining to accelerators). Accel-

erators have more recently also become essential tools to explore other fundamental sciences

like biology and chemistry where the development of modern electron-based light sources

can generate high-repetition rate X-ray pulses to image biological and chemical reactions on

ultra-fast timescales.

The relatively small mass of the electron (511 keV) compared to the proton (938 MeV)

generally increases the difficulty of producing energetic electron beams due to the increase

in synchrotron-radiation power losses which scale as γ4; where the Lorentz factor γ = E
mc2

.

Therefore, state-of-the-art electron beams are generally produced in linear accelerators (or

linacs). In a linac, unlike circular machines, a bunch of charged particles only passes through

an accelerating structure once: it is not recirculated. This significantly increases the cost

per energy. Additionally, conventional accelerating structures based on the radiofrequency
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(RF) technology have limited acceleration gradients of ∼ 100 MV/m. Superconducting

radiofrequency (SRF) technology provides much more efficient acceleration at significantly

higher repetition rates, but their acceleration gradients are limited to 35 MV/m and also

require costly cooling infrastructure. These complications have motivated research into other

alternative particle acceleration techniques which are generally divided into two categories

using laser-based and beam-driven approaches. In the former methods, a high power laser

is used to excite a plasma which leads to acceleration gradients on the order of GV/m. In

beam-driven approaches [4], a high-charge “drive” bunch passes through a high-impedance

medium and loses energy to an electromagnetic wake; a properly delayed “witness” bunch

can experience large acceleration gradients from this wake. The techniques are limited

by repetition rates of power of high-power lasers and the required high-energy accelerator

infrastructures in beam-driven schemes.

In this dissertation, we cover several topics involving dielectric-lined waveguides (DLW)

for beam acceleration and manipulation which can lead to improvements in beam-driven ac-

celeration. We begin in chapter 2, with a quantitative description of cylindrically-symmetric

and slab-symmetric dielectric lined waveguides. In chapter 3 we review the transformer

ratio in detail, and also discuss alternative longitudinal shapes and shaping techniques to

improve the efficiency of beam-driven technique. In Chapter 4 we discuss the use of DLWs

for ballistic bunching and beam manipulation. In Chapter 5 we discuss several applica-

tions of our work and include an experimental portion consisting of the development of a

laser-based THz source for the characterization of a slab-symmetric DLW which was to be

used in an experiment at Fermilab Accelerator Science and Technology (FAST) facility in a

beam-driven experiment. We also include a preliminary investigation into a THz-based elec-

tron gun which would match the phase and group velocities with an accelerating low-energy

electron bunch. Such a “THz-gun” is based on a longitudinally tailored DLW structure to

control the dispersion of a THz pulse.



CHAPTER 2

THEORY OF DIELECTRIC-LINED WAVEGUIDES

Most of the work discussed in this dissertation involves dielectric-lined waveguides (DLW).

Generally, dielectric-lined waveguides are normal conducting waveguides with a thin dielec-

tric coating on the interior of the waveguide; the dielectric coating serves as an impeder

to slow down a traveling electromagnetic wave. DLWs can generally take any geometry,

however we will mostly focus on cylindrically-symmetric and slab-symmetric geometries for

beam-driven acceleration. In a cylindrical-symmetric DLW is a hollow dielectric cylinder

surrounded in a conducting sleeve. A slab-symmetric DLW consists of two dielectric slabs

usually placed in parallel with a conductive coating on the outside slab surfaces. In Fig. 2.1,

we show an electron “drive” bunch passing through each geometry and exciting an electro-

magnetic wake; the red and blue contour traces correspond to the longitudinal accelerating

field; a properly delayed “witness” bunch can be accelerated in such a wake.

Both geometries offer their own distinct advantages; the closed, cylindrical geometry of-

fers the largest accelerating field; while the open, slab geometry allows for a tunable aperture

which directly influences the fundamental wavelength of the waveguide. Generally, a sin-

gle charge passing through such a single-mode DLW with fundamental wavelength λ will

generate a longitudinal wake of the form

Wz(z) = κ cos kz (2.1)

where κ is the loss factor attributed to the attentuation of a mode in the DLW and

depends on geometrical and material properties; and k = 2π/λ (see Ref. [5]). It is worth
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Figure 2.1: A cylindrically-symmetric (a) and slab-symmetric (b) dielectric-lined waveguide
(DLW) are shown. In both cases, a dielectric thickness of b− a is surrounded by a metallic
jacket; an electron bunch is shown exiting each DLW after inducing a longitudinal electric
field (shown as red and blue contrours).

noting that for a single mode structure κ = |V |2/4W where V and U are the voltage and

stored energy of the excited mode respectively (see 3). Note that the field in Eq. 2.1 and the

wake function have no dependence on the transverse coordinates. The expected change in

longitudinal momentum for a particle within and behind a bunch with line-charge current

distribution Λ(z) is obtained from the convolution integral

∆E(z) ' c∆pz(z) = Ldlw

∫ z

−∞
dz′Λ(z − z′)wz(z′), (2.2)

where Ldlw is the length of the DLW structure and z the longitudinal coordinate within the

bunch.
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In the following we will give a brief introduction to the cylindrically-symmetric and slab-

symmetric waveguides.

2.1 Cylindrically-symmetric DLW

For a dielectric-lined cylindrical waveguide, the theory was well completed by M. Rosing

and W. Gai in Ref. [6]. Here we go through the important and relevant results of the

derivation to calculate wakefields for arbitrary current profiles.

The derivation for these types of problems follows a boundary value approach where

Maxwell’s equations are solved in the geometry and matched to a source; for the cylindrical

geometry, this leads to Bessel solutions. While there are an infinite number of solutions,

the leading contributions arrise from the monopole (m = 0) and dipole (m = 1) modes.

For acceleration purposes, we are primarily interested in the monopole modes which are

solely excited drive bunches travelling on axis. Additionally, these solutions are taken in the

relativistic limit where v/c → 1 and therefore the trailing wakes are static with respect to

the drive bunch.

For the monopole mode (m = 0), the dispersion relation for an ultra-relativistic beam

(β → 1) is given by

R′0(sa)− sa

2εr
= 0 (2.3)

where Rm and R′m are given by

Rm(s) = Nm(sb)Jm(sr)− Jm(sb)Nm(sr) (2.4)

R′m(sr) = Nm(sb)J ′m(sr)− Jm(sb)N ′m(sr), (2.5)
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where Jm and Nm are mth-order Bessel functions of the first and second kinds respec-

tively, s = (ω
c
)2
√
εrβ2 − 1, r is the radius, a is the inner radius, ε is the relative dielectric

permittivity of the structure and ω is the angular frequency.

Once the zeros of the dispersion relation are found (sλ) one can find the longitudinal

electric field produced by a single electron

Ez(r, z0) =
4e

εra

∑
λ

 R0(sa)

d
ds

(
R′0(sa)− sa

2εr
R0(sa)

)

s=sλ

cos
ωλz0
c

(2.6)

where z0 is the longitudinal distance behind the charge. For arbitrary current profiles,

the field can be calculated via a convolution between this Green’s function and a current

distribution.

The transverse wakefields can be calculated using the Panofsky-Wenzel theorem [7]

∂F⊥
∂z

= e∇⊥Ez, (2.7)

giving

Fr = e(Er − βBθ) = e

∫
∂Ez
∂r

dz, (2.8)

Fθ = e(Eθ + βBr)e

∫
∂Ez
r∂θ

dz. (2.9)

The absence of dependence on r and θ in 2.6 results in a longitudinal field with no

transverse forces. However for m ≥ 1 (e.g. off-axis beam), wakefields do have transverse

forces which can lead to significant focusing/defocusing forces. These forces can lead to beam

breakup (BBU) instabilities for non-centered or transversely asymmetric beams. Ultimately

such dipole-modes (m=1) can result in transverse fields on the order of 1/a3 (Ref. [8]) which
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has more recently shifted interest toward slab-symmetric DLWs which are less prone to such

detrimental fields as explained in Ref. [9].

2.2 Slab-symmetric DLWs

Slab-symmetric structures are an attractive alternative to cylindrical-symmetric DLWs

for beam-driven acceleration for a number of reasons discussed ahead. We use a theoretical

model from colleague Daniel Mihalcea ([10]) which is based on [9, 11] for all beam-driven

calculations with slab-symmetric DLWs. The approach also develops a Green’s function

to compute the 3D electromagnetic fields in the waveguide; however now the rectangular

axisymmetric fields take two sets of modes; the longitudinal section electric (LSE) and lon-

gitudinal section magnetic (LSM) which are based on more conventional transverse electric

(TE) and transverse magnetic (TM) modes in a rectangluar conducting waveguide, but in-

clude the dielectric contribution. We are particularly interested with the LSM11 mode for

beam-driven acceleration.

The approach uses the Hertzian vector potential method ([12]) to derive the LSM dis-

persion relation

coth kx,ma cot ky(b− a) =
ky

εrkx,m
. (2.10)

Here kx,m and ky,n are wavenumbers for an infinite set of modes in the open (x̂) and

dielectric (ŷ) planes; m and n are integers for these directions respectively, and the eigenfre-

quencies are related via

k2x,m + k2y,n =
ω2
m,n

c2
(εr − 1) (2.11)
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where εr is the relative dielectric permittivity of the structure.

Ex,m,n =


− iE0;m,nkx,m

kz
sin(kx,mx) cosh(kx,my) 0 < y < a

− iE0;m,nkx,m
kz

cosh(kx,ma)

sin[ky,n(b−a)] sin(kx,mx) sin [ky,n(b− y)] a < y < b

Ey,m,n =


iE0;m,n

kx,mkz
(k2x,m + k2z) cos(kx,mx) sinh(kx,my) 0 < y < a

iE0;m,n cosh(kx,ma)

ky,nkz sin[ky,n(b−a)](k
2
z + k2x,m) cos(kx,mx) cos [ky,n(b− y)] a < y < b

Ez,m,n =


E0;m,n cos(kx,mx) cosh(kx,my) 0 < y < a

E0;m,n
cosh(kx,ma)

sin[ky,n(b−a)] cos(kx,mx) sin [ky,n(b− y)] a < y < b

Hx,m,n =


− iE0;m,nkzεrc

kx,m
cos(kx,mx) sinh(kx,my) 0 < y < a

− iE0;m,nkzεrc

kx,m

cosh(kx,ma)

sin[ky,n(b−a)] cos(kx,mx) cos [ky,n(b− y)] a < y < b

Hy,m,n =0

Hz,m,n =


E0;m,nεrc sin(kx,mx) sinh(kx,my) 0 < y < a

E0;m,nkx,mεrc

ky,n

cosh(kx,ma)

sin[ky,n(b−a)] sin(kx,mx) cos [ky,n(b− y)] a < y < b

(2.12)

where
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ELSM
0;m,n =

1

2ε0

λm cosh(kx,my0)
sinh(2kx,ma)

2kx,m
+ εr cosh

2(kx,ma)

sin2[ky,n(b−a)]

{
b−a
2

(
1 +

εrk2x,m
k2y,n

)
− sin[2ky,n(b−a)]

4ky,n

(
1− εrk2x,m

k2y,n

)} .
(2.13)

Finally for an arbitrary longitudinal charge density ρ, the longitudinal wakefield takes

the form

Wz(z) =
∑

m=0,1,···

∑
n=0,1,···

∫ ∞
z

ρ(z′)Ez,m,n(z − z′)dz′. (2.14)

2.3 Alternative slab-symmetric formulation

We also looked at two alternative approaches from Bernhard ( [13]) and Xiao ( [11]) to

slab-symmetric fomulations for arbitrary phase velocities in effort to understand dispersion

related discussions ahead. The papers use different techniques to obtain the fields and

dispersion equations for the LSE and LSM modes. Bernhard’s method uses the traditional

Hertzian potential to calculate the E and B fields using the Lorentz conditions. With the

exception of a small typo described below, Bernhard’s method is mathematically correct.

Xiao uses another technique with circuit equivalence to jump directly to the dispersion

equations and works backwards to attain the electromagnetic fields. The authors also use

different variables to describe the geometry, for consistency we reexpress the Xiao formulation

into Bernhard’s (see Fig. 2.2 for corresponding description).

In this notation the wavevectors take the form for the dielectric (kx1) and hollow (kx2)

sections
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Figure 2.2: The slab-symmetric DLW in Bernhard’s formulation; the full dielectric dimension
width has length a, the two dielectric slabs have a thickness t, and the transverse open
dimension has length b.

k2x1 =
ω2

c2
εr − k2z − k2y

k2x2 =
ω2

c2
− k2z − k2y.

(2.15)

This leads to the LSM modes for Bernhard and Xiao respectively

0 = k2x1 sin2 kx1t sin kx2(a− 2t)− ε2rk2x2 cos2 kx1t sin kx2(a− 2t)

−2εrkx1kx2 sin kx1t cos kx1t cos kx2(a− 2t)

0 = kx1 sin kx1t sin kx2(
a

2
− t)− εrkx2 cos kx2(

a

2
− t) cos kx1t.

(2.16)

The dispersion equations are transcendental and generally do not have closed form solu-

tions; fortunately modern computing power can easily solve these equations numerically. We

developed a C++ code and as an example, we illustrate the dispersion for the LSM modes

in a structure with parameters (a, b, t, ε) = (1 mm, 1 cm, 200 µm, 5.7) in Fig. 2.3. Here we

solve for kz as a function of ω; as usual the phase and group velocities can be obtained via

ω/kz and ∂ω/∂kz respectively.
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Figure 2.3: Dispersion relation for the LSM mode for the Bernhard formalism for a structure
with parameters (a, b, t, ε) = (1 mm, 1 cm, 200 µm, 5.7). The diagonal red line corresponds
to the speed of light.

2.4 Computation and simulation

Much of the work that ensues requires computational simulation to depict the real-world

physical dynamics. In the following we have used a combination of astra [27], vorpal [51],

and elegant [63] for different purposes; here we briefly introduce each of these codes.

astra is a particle tracking code which is capable of 2+1/2 D and full-3D computation

which includes space-charge forces. We use this code especially for low-energy beams where

space charge has a signficant impact on the beam dynamics. astra is capable of wakefield

calculations for a longitudinal (and transverse) Green’s function; this is accomplished via

the convolution integral in 2.2 and the Green’s function is calculated in an auxilary file.

vorpal is a three-dimensional electromagnetic and electrostatic PIC code. Vorpal

uses a conformal finite difference-time domain (FDTD) method to solve Maxwell’s equations

and that includes an advanced technique known as cut-cell boundaries to allow accurate
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representation of curved geometries within a rectangular grid. We use Vorpal to compare

with results from other codes.

elegant is a particle tracking code that does not include space charge. It is especially

useful to simulate and optimize beamline configurations for particular applications (e.g.

fitting a beam through a DLW). elegant is based on an optics-approach where transfer-

matrices are defined for each beamline element; the resulting multiplication of these matrices

leads to a comprehensive transfer matrix for the entire beamline and results in a relatively

fast code capable of tracking a large number of particles.

We also developed a C++ which calculates wakefields for arbitrary geometries (a, b, εr)

and currents (S(z)). The code works by solving the dispersion relation in a conventional

step-by-step approach; for an arbitrary current profile input into the program, the code

interpolates across the current and calculates the convoltuion integral via the Runge-Kutta-

4 method. A subsequent routine is ran after the wake calculation to determine the maximum

accelerating and decelerating fields to ultimately calculate the transformer ratio. This code

was used throughout the dissertation in various parameter scans in various studies for the

cylindrical-symmetric DLW.

An example of a computed Green’s function for a structure with parameters (a, b, εr) =

(400 µm, b = 450 µm, εr = 5.7) (corresponding to diamond) appears in Fig. 2.4. The Green’s

function converges after the inclusion of 4 modes (the 50-µm thickness of the structure

supports multiple modes with significant axial fields).
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Figure 2.4: Wake function computed as wz(ζ) =
∑m

l=1wz,l for m = 1, 2, 4, 8, and 16 for a
DLW structure with parameters a = 400 µm, b = 450 µm, and εr = 5.7. The fundamental-
mode (blue trace) wavelength is λ1 ' 1.09 mm.



CHAPTER 3

BEAM-DRIVEN ACCELERATION

Increasing the energy of an electron beam can be useful for many applications ranging

from fundamental physics to the development of coherent light-sources for biological or even

nuclear science. Conventional RF-based acceleration technologies are limited to acceleration

gradients of ∼ 100 MV/m; future TeV+ accelerators based on conventional acceleration

techniques will necessarily carry large footprint and costs. An alternative is beam-driven ac-

celeration ([4]) where a high-charge “drive” bunch passes through a high-impedance medium

such as a DLW or plasma and experiences a decelerating field; and a properly delayed trailing

“witness” bunch can experience a large accelerating field.

3.1 Tranformer ratio

A figure of merit to beam-driven acceleration which is proportional to the efficiency of

the scheme is the transformer ratio, defined as

R ≡
∣∣∣∣E+

E−

∣∣∣∣ , (3.1)

where E+ is the maximum accelerating field and E− is the maximum decelerating expe-

rienced by the drive bunch; assuming the drive bunch is fully decelerated, the final energy

gain of the witness bunch can be approximated by Ef = EiR where Ei is the initial beam

energy.
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Generally the transformer ratio is limited to values R ≤ 2 due to the fundamental beam-

loading theorem [14] which states that from energy conservation, the energy lost of a driving

bunch must be equal to the work done by the induced voltage on itself. However larger

values can be produced using drive bunches with tailored (asymmetric) current profiles.

Take for example the standard reference in discussing the tranformer ratio, the “ramped” or

“triangular” distribution defined as

S(z) = az. (3.2)

For a single mode structure, the Green’s function is given by Wz = 2k0 cos kz (where

k0 is the loss factor). We impose the normalization condition: aL2/2 = Q where Q is the

charge of the bunch, and L is the bunch length, this leads to the following decelerating and

accelerating fields respectively

E−(z) =

∫ z

0

I(x)Wz(z − x) dx =
4Qk0
L2k2

(1− cos kz)

E+(z) =

∫ L

0

I(x)Wz(z − x) dx =
4Qk0
L2k2

(cos k(L− z)− cos kz − Lk sin k(L− z)).

(3.3)

Altogether, the transformer ratio can be locally maximized to give R =Nπ by choosing

bunchlengths L = 2πN
k

= Nλ; and generally we see R ≈ πL and E+ ≈ 2
π2L2 ; see Fig. 3.4.

The oscillating decelerating field E− diminishes the total energy which can be extracted from

the drive beam.

Furthermore, it can be shown that both R and E+ for a given charge are maximized

when the decelerating field over the drive bunch is constant [15]. Additionally, bunch current

profiles that minimize the accumulated energy spread within the drive bunch are desirable

as they enable transport of the drive bunch over longer distances.
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Figure 3.1: The longitudinal accelerating field is shown for the ramped bunch for a cylindrical
structure with parameters (a, b, ε) = (165 µm, 195 µm, 5.7). Arrows indicate the maximum
accelerating and decelerating fields (E+, E− respecitvely) and hence the transformer ratio
of ∼6 from a bunchlength of ∼ 1.5λ.

To date, several current profiles capable of generating transformer ratios R > 2 have

been proposed [15, 16, 17]. These include linearly ramped profiles combined with a doorstep

or exponential initial distribution [18]. In our notation the “doorstep” distribution is defined

as

S(z) =


a if 0 ≤ z < ξ,

a(2π(z−ξ)
λ

+ 1) if ξ ≤ z ≤ Z,

0 elsewhere.

(3.4)
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More recently a piecewise “double-triangle” current profile was suggested as an alternative

with the advantage of being experimentally realizable [19]; in our notation this is defined as

S(z) =


akz if 0 ≤ z < ξ,

a(kz − 1) if ξ ≤ z ≤ Z,

0 elsewhere.

(3.5)

We note that both of these currents only lead to constant decelerating fields when ξ = λ/4;

we omit the “exponential-ramp” due to the overlying difficulty of experimentally realizing

the shape.

A main limitation common to all these shapes resides in their discontinuous character

which make their experimental realization either challenging or relying on complicated beam-

manipulation techniques [20, 21]. In addition these shapes are often foreseen to be formed in

combination with an interceptive mask [22, 23] which add further challenges when combined

with high-repetition-rate linacs [8] (where, e.g., high-power beams can melt and destroy

masks, or require cooling infrastructure).

3.2 Smooth Shapes

We consider a smooth function S(z) to be non vanishing on two intervals [0, ξ] (the

bunch-head) and [ξ, Z] (bunch-tail) and zero elsewhere. We also constrain our search to

functions where S(z) and S ′(z) ≡ dS/dz are continuous at z = ξ. Introducing the function

f(z) (to be specified later), we write the charge distribution as
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S(z) =


f(z) if 0 ≤ z < ξ,

f ′(ξ)z − f ′(ξ)ξ + f(ξ) if ξ ≤ z ≤ Z,

0 elsewhere.

(3.6)

3.2.1 Linear ramp with sinusoidal head

Based on our previous work [24] we first consider the following function

f(z) = az + b sin(qkz), (3.7)

where a and b are positive constants, k is again the wavenumber associated to a structure,

and q > 0 is an integer. Consequently, using Eq. 3.6, the axial bunch profile is written as

S(z) =



az + b sin(qkz) if 0 ≤ z < ξ,

ax+ bqk(x− ξ) cos(qξk)

+b sin(qξk) if ξ ≤ z ≤ Z,

0 elsewhere.

(3.8)

In this section we report only on solutions pertaining to ξ = λ/2. Additional, albeit more

complicated, solutions also exist for larger ξ; however, these solutions lead to additional

oscillations which ultimately lowers the transformer ratio.
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From Eq. 3.3, the decelerating field then takes the form

E−(z) = κ


λ
π2

(
aλ sin2

(
πz
λ

)
+

πbq(cos( 2πz
λ )−cos( 2πqz

λ ))
q2−1

)
z < λ/2

λ((q2−1)(aλ+2πb(−1)qq)+cos( 2πz
λ )(2πbq((−1)qq2+1)−a(q2−1)λ))

2π2(q2−1) z ≥ λ/2

(3.9)

The oscillatory part in the tail (λ/2 ≤ z) can be eliminated under the condition

b =
a (q2 − 1)λ

2πq ((−1)qq2 + 1)
, (3.10)

which leads to the following decelerating and accelerating fields respectively

E−(z) = κ


aλ2(2(−1)qq2 sin2(πzλ )−cos( 2πqz

λ )+1)
2π2((−1)qq2+1)

z < λ/2

a((−1)q(2q2−1)+1)λ2
2π2((−1)qq2+1)

z ≥ λ/2

(3.11)

E+(z) =

∫ Nλ

0
s(z′)ω(z − z′)dz′

= κ
aλ2

(
π
(
(−1)q

(
(4N − 1)q2 − 2N + 1

)
+ 2N

)
sin
(
2π
(
N − z

λ

))
+
(
(−1)q

(
2q2 − 1

)
+ 1
)
cos
(
2π
(
N − z

λ

)))
2π2 ((−1)qq2 + 1)

.

(3.12)

Finally, the transformer ratio can be calculated by taking the ratio of the maximum

accelerating field over the maximum decelerating field which yields

R =

√
π2 ((−1)q ((4N − 1)q2 − 2N + 1) + 2N)2 + ((−1)q (2q2 − 1) + 1)2

(−1)q (2q2 − 1) + 1
. (3.13)

Two sets of solutions occur for even and odd q which can be interpreted as a phase

shift in the oscillatory part. Additionally, larger multiples of even and odd q lead to more
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Figure 3.2: Example of current profiles described by Eq. 3.8 (shaded line) with the cor-
responding induced voltages. The parameters are n = 0, N = 5, and plots (a) and (b)
respectively correspond to the cases q = 2 and q = 3. The head of the bunch is at kz = 0.

oscillations in the head which ultimately reduce the transformer ratio. In Fig. 3.2 we illustrate

the simplest even (a) and odd (b) solutions corresponding to q = 2 and q = 3 respectively.

3.2.2 Linear ramp with parabolic head

We now consider an even simpler quadratic shape taking the form

f(z) = az2, (3.14)
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which leads to the current profile

S(z) =


az2 if 0 ≤ z < ξ,

2aξz − aξ2 if ξ ≤ z ≤ Z,

0 elsewhere.

(3.15)

The resulting decelerating field within the bunch is

E−(z) = 2κ


−2a sin(kz)−kz

k3
if 0 ≤ z < ξ,

2a sin[k(z−ξ)]−sin(kz)+2kξ
k3

if ξ ≤ z ≤ Z,

0 elsewhere.

Again, the decelerating field can be made constant for z ∈ [ξ, Z] when ξ = νλ with ν ∈ N.

In such a case the previous equations simplifies to

E−(z) = 2κ


−2a sin(kz)−kz

k3
if 0 ≤ z < νλ,

4πaν
k3

if νλ ≤ z ≤ Z,

0 elsewhere.

E+(z) = −8πνaκ

k3
[π(2N − ν) sin(kz)− cos(kz)], (3.16)
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Figure 3.3: Example of ideal “quadratic” current profiles given by Eq. 3.15 (shaded line)
with corresponding induced voltage. The parameters are ν = 1, and N = 5. The head of
the bunch is at kz = 0.

yielding the transformer ratio

R = [1 + π2(2N − ν)2]1/2. (3.17)

In Fig. 3.3 we illustrate an example of the quadratic shape (green trace) as well as its

corresponding longitudinal electric field (blue trace) for ν = 1 and N = 5.

3.2.3 Comparison with other shapes

We now turn to compare the smooth longitudinal shapes from the previous Section with

the doorstep [18] and double-triangle [19] which also provide constant decelerating fields over

the bunch-tail. For a fair comparison, we stress the importance of comparing the various
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current profiles with equal charge. Consequently, we normalize each of the current profile to

the same bunch charge

Q =

∫ Nλ

0

dzS(z, a); (3.18)

where a is the scaling parameter associated with each bunch shape, and Nλ is the total bunch

length which is assumed to be larger than the given shape’s bunch-head length (Nλ > ξ).

For each distribution, the charge normalization generates a relationship between a and Nλ

which enables us to rexpress R in terms of Q and a. In Tab. 3.1 we tabulate the analytical

results forR(N) (the conventional notation [18, 19]) andR(Q, a), and also list the maximum

decelerating field Em
− for each distribution. Additionally in Fig. 3.4 we illustrate these results

in a log-log plot where, for each distribution, the scaling parameter (a) was varied for a fixed

charge and wavelength. To complete our comparison we also added the linear-ramp and

Gaussian distributions.

The results indicate that all of the distributions with constant decelerating fields over

the bunch-tail ‘live’ on the same curve; additionally, by varying the scaling parameter a for

a distribution, you can shift a distribution to have a larger (resp. smaller) R (resp. E+) and

vice-versa. Ultimately, this suggests that the distribution which is simplest to make is as

useful as any other and it can be scaled accordingly (R, E+) for a specific application. These

results confirm our previous studies regarding the numerical investigation of the trade-off

between R and E+ [25].

3.3 Photoemission of optimal shapes via laser-shaping

In this section we investigate the realization of the quadratic distribution discussed in

Section 3.2 by longitudinally tailoring a laser pulse impinging on a photocathode in a pho-

toinjector. The resulting electron distribution is then accelerated in an RF-gun and expands
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Table 3.1: Table comparing several different proposed drive bunch distributions as a function
of bunch length and charge. Additionally, the maximum decelerating field (Em

− ) is shown
for each distribution. Here we consider κ = 1.

distribution R(N) R(Q) Em
−

doorstep [18]
√

1 + (1− π/2 + 2πN)2
√

2 + π(4Q
aλ
− 1) aλ

π

double triangle [19]
√

1 + (2πN − 1)2
√

2 + π(4Q
aλ
− 1) aλ

π

sin (q = 2) 1
8

√
π2(3− 16N)2 + 64 1

8

√
64− 15π2 + 48πQ

aλ
16aλ
3π

sin (q = 3) 1
2

√
π2(1− 4N)2 + 4 1

6

√
44− 9π2 + 24πQ

aλ
6aλ
π

quadratic
√

1 + π2(2N − 1)2
√

1 + π2( 4Q
aλ3
− 1

3
) aλ3

π2

via space charge forces. If the charge density of the emanating electron bunch is sufficiently

low, the resulting distribution will be relativistically preserved through a drift; however for

larger charge densities, the original longitudinal distribution will morph according to the in-

tegrated space charge forces inside the bunch. The setup we consider throughout this section

is depicted in Fig. 5.3 and consists of a typical 1+ 1
2
-cell BNL/SLAC/UCLA S-band RF-gun

operating at 2.856 GHz surrounded by a solenoidal lens [26]. The large (∼ 140 MV/m)

acceleration gradients in the gun help preserve larger charge densities compared with e.g. L-

band guns. The simulations are carried with Astra [27], a particle-in-cell beam-dynamics

program that includes a quasi-static cylindrically-symmetric space charge algorithm. The

simulation also includes the image-charge effect which arises during the photoemission pro-

cess, in our simulations the electron bunch is represented by 200,000 macro-particles.

3.3.1 Case of an ideal laser-shaping technique

The relatively simple form and smoothness of the quadratic-ramp proposed above invites

the possibility of generating it via laser-shaping in a photoinjector where the space-charge

forces naturally blow-out a given distribution smoothely (e.g. a discontinous shape will
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Figure 3.4: Tradeoff curves between R and Em
+ for the current profiles listed in Tab. 3.1.

The “quadratic” and “sin ramps” respectively correspond to the distributions proposed in
Sections 3.2.2 and 3.2.1. The Gaussian and ramp distributions are displayed for comparison.
This was generated by fixing the charge Q and varying the scaling parameter a.

morph into smooth one). In this perspective there exists two possibilities first, generate the

exact quadratic-ramp distribution with small enough longitudinal charge density to preserve

the shape is completely preserved under acceleration in the photoinjector, or second, gener-

ate a distribution which will blow-out into the quadratic ramp while being accelerated; in

principle the second alternative could generate longitudinally shorter bunches with higher

charge densities which are more attractive to generate larger accelerating fields. For a given

distribution, there is no general solution to the evolution of a charge distribution. However,
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Figure 3.5: Configuration used for the pulse-shaping simulations using a S-band RF gun (a).
A temporally shaped laser pulse (b) is optimized to result in a photo-emitted electron-beam
with current profile (c) having features similar to the distribution discussed in Sec. 3.2.2. In
insets (a) and (b) the tail of the bunch is at t = 0.

there are some elementary examples, such as the inverted parabola, which can be understood

nearly completely due to the linear nature of the electric fields and forces within the bunch.

The asymmetry of the ramped bunch destroys the possibility of preserving its shape with

linear space charge fields.

The calculation of the longitudinal electric field in the rest frame of the distribution is

usually calculated via [?] E(x) = − g
4πε0

∂ρ(x)
∂x

, where g is a geometry factor and ε0 the vacuum

electric permittivity; however, this equation is only valid for closed symmetric bunches and

does not give any valuable insight into the longitudinal electric field in the distribution above.

Therefore to investigate such space charge effects, we develop a very simple 1-D model from

elementary principles. Working in the bunch reference frame and assuming a ”cold” beam

with no energy spread, we consider the unit less 1-D Green’s function for electrostatics

G(x, x′) =
1

2
|x− x′|, (3.19)
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and compute the scalar potential via the convolution

Φ(x) =

∫ L

0

1

2
|x− x′|ρ(x′)dx′. (3.20)

This method recovers very similar fields for the familiar inverted parabola [?] in dimensionless

units I(x) = x(1− x). in particular the corresponding potential is found to be

Φ(x) =
1

24
(1− 2(x− 2x3 + x4)) (3.21)

giving rise to the electric field E(x) = 1
12

(−1 + 6x2 − 4x3) and force dependence F (x) =

x
12

(1− 6x2 + 4x3)(x− 1) as illustrated in Fig. 3.6.

Figure 3.6: Inverted parabola distribution (black trace), and corresponding electrostatic
potential (red trace), electric field (blue trace) and resulting force (blue trace) as a function
of the longitudinal coordinate.

As a guess we explore the power function

ρ(x) =


xn, for 0 < x < 1

0, elsewhere,

(3.22)

This respectively leads to the electrostatic potential, electric field and force field
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Φ(z) =
1 + n− 2z − nz + 2z2+n

4 + 6n+ 2n2
, (3.23)

E(z) =
2z1+n − 1

2(1 + n)
, and (3.24)

F (z) = zn
2z1+n − 1

2(1 + n)
. (3.25)

In Figure 3.7 we explore the electrostatic potential, field and force associated to power-law

distributions with n = 1, 2, and 5. In particular, we notice for values of n > 1 (e.g. n=2,5)

the fields scale and maintain their shape across the distribution; moreover, the asymmetry of

the fields will push the bunch apart about the zero-force point. In the n=2 case for example,

the maximum force in -x̂ occurs near 0.6; during expansion, this portion of the bunch will

wash-out toward the left which will help make a quasi-linear shape. However the nonlinearity

of the fields makes an accurate prediction quite complicated and we rely on simulations in

the following section.

We now formalize the description above for a laser intensity distribution of the form

I(r, t) = T (t)R(r), where T (t) is now the longitudinal temporal profile rewritten as

T (t) = T0t
αH(τ − t), (3.26)

and R(r) the transverse laser envelope assumed to be Gaussian; T0 is a normalization con-

stant, α > 0 is the polynomial power, τ is the ending time of the pulse, and H(t) is the

Heaviside function.

Additionally, the transverse spot size of the laser pulse on the photocathode also controls

the longitudinal electric fields but also influences the transverse “thermal” emittances. It

is also possible to reduce the electric fields and the associated blowout rate by using longer

laser pulses; in this scenario, the resulting electron bunch will evolve at a slower rate but
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Figure 3.7: Charge distribution (black trace), and corresponding electrostatic potential (red
trace), electric field (blue trace) and resulting force field (blue trace) for n = 1 (top), n = 2
(middle), and n = 5 (bottom).

the resulting bunch distribution will have a smaller peak current compared to when starting

with smaller values of τ . A smaller current will impact the performances of the wakefield

accelerator (or require the implementation of a longitudinal compression scheme). Finally,
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it would also be possible to use a longer, e.g. 2 + 1
2
-cell, RF gun or another acceleration

cavity in close proximity to the gun to preserve larger charge densities which could effectively

alleviate the need for a bunch compressor to drive large accelerating fields in the subsequent

wakefield accelerator.

Figure 3.8 shows simulated longitudinal phase space snapshots and corresponding cur-

rents at different axial locations downstream of the gun for a 1-nC bunch. For this simulation

a 1-mm rms laser spot size on the photocathode was used. The initial laser distribution was

described by Eq. 3.26 with α = 2 and τ = 15 ps. A fit of the current distribution at

s = 50 cm from the photocathode is shown in Fig 3.8 and indicates that the final electron

bunch distribution is indeed accurately described by Eq. 3.15.
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Figure 3.8: Evolution of the electron-bunch current (a) and longitudinal phase space (b)
along the beamline at 20 (red), 60 (green), and 100 cm (blue) from the photocathode surface
and (c) comparison of the current profile numerically simulated at s = 50 cm (red trace)
with a fit to equation Eq. 3.15 (blue lines). The head of the bunch is at large values of z.

3.3.2 Limitation of a practical laser shaping technique

As a first step toward a realistic model for the achievable shaped we consider the photoe-

mission process to be resulting from frequency tripling of a λ0 = 800-nm amplifier infrared
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(IR) pulse impinging a fast-response time cathode (with typical work functions corresponding

to ultraviolet photon energy ∼ λ0/3). Such a setup is commonly used in RF photoinjectors

such as the one discussed in the previous sections. We further assume that the frequency

up-conversion process does not affect the original laser’s temporal shape (e.g. the UV-pulse

temporal shape is identical to the IR-pulse temporal shape). Under such an assumption, the

formation of the ideal temporal shape discussed in the previous Subsection is limited by the

finite laser bandwidth and frequency response of the shaping process.

We consider an incoming amplified IR pulse with intensity Iin(r, t) = I0(r)sech2(t/τ)

downstream of the last-stage amplification, where τ is the laser pulse duration. We model

the IR pulse laser-shaping process via the convolution Iout(r, t) =
∫ +∞
−∞ Iin(r, t − t′)R(t′)dt′

where Iout(t) and R(t) represent the shaped-pulse intensity and response function of the

shaping method respectively.

Given the desired output shape and incoming laser pulse profile, the response function

of the shaping process has to be set to satisfy [30]

R̃(ω) =
Ĩout(ω)

Ĩin(ω)
, (3.27)

where the upper tilde represents the Fourier transformation f̃(ω) =
∫ +∞
−∞ f(t)eiωt. In practice

Iin(ω) is defined over a finite range of frequency ω = ω0 ± δω
2

where ω0 ≡ 2πc
λ0

is the central

laser frequency and δω ≡ ω0

λ0
δλ is the laser pulse bandwidth (δλ is the wavelength span of

the pulse spectrum).

The typical shape considered in the previous section after laser shaping is shown in

Fig. 3.9; the limited bandwidth has very little effect except for the well-known ringing effect

at the sharp discontinuities [31]; see Fig. 3.9 (b) and (c).

Another potential limitation to our shaping scheme arises with a high-efficiency (semicon-



32

−20000 −15000 −10000 −5000 0 5000

time behind the head (fs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
la

se
r

in
te

n
si

ty
(a

rb
u

n
it

s) (a)
ideal

cathode

shaper

cathode + shaper

(b)

(c)

Figure 3.9: Comparison of nominal (“ideal”) shape with the shapes achieved when taking
into account the photoemission response time (“cathode”), the laser-pulse-shaping finite
bandwidth (“shaping”) and both effects (“cathode + shaper”). The ideal laser temporal
profile is described by Eq. 3.26 with α = 2 and τ = 15 ps. Insets (b) and (c) are zooms of
the areas t ∈ [−15200,−13600] fs (peak location) and t ∈ [−16000,−15020] fs (left edge of
the profile) respectively. The head of the laser pulse is at t = 0.

ductor) photocathode. We consider as an example the case of Cs2Te photocathodes because

of their wide use in high-current photoinjectors. The response-time limitation is investigated

using the parameterized impulsional time response of Cs2Te described in Ref. [32] based on

numerical simulations presented in Ref. [33]. The impulsional response is convolved with the

distribution used in the previous section and the results are gathered in Fig. 3.9. Again this

effect appears to be marginal. For the sake of completeness, the various profiles shown in

Fig. 3.9 are tracked with astra and the final current distributions at s = 50 cm are found

to be indiscernibly close to the ideal shape considered in the previous Section; see Fig. 3.10.

Such a result gives further confidence in the proposed shaping approach.
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Figure 3.10: Comparison of the final electron-bunch current at s = 50 cm from the cathode
surface for the four cases considered in Fig. 3.9. The “cathode” and “shaper” respectively
correspond to the inclusion of the cathode response time and shaper bandwidth limitation
in the initial particle distribution at s = 0 while the ideal case is given by by Eq. 3.26 with
α = 2 and τ = 15 ps. The head of the bunch corresponds to z > 0.

3.4 Formation of high-energy tailored bunches for a DWFA

LINAC

We finally investigate the combination of the tailored current-profile generation scheme

with subsequent acceleration in a linac located downstream of the RF gun. Such a con-

figuration could be useful to form tailored relativistic electron bunches for direct injection

in wakefield-acceleration structures. For this example, we consider a high-repetition drive

bunch with parameters consistent with a recently proposed beam-driven accelerator for a

short-wavelength free-electron laser (FEL) [8]. We adopt a different approach than Ref [8]
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and instead choose a 1.3-GHz superconducting RF (SCRF) linac (L0 and L1) composed of

TESLA cavities [34] coupled to a quarter-wave 200-MHz SCRF gun [35, 36] originally de-

signed for the WiFEL project [37]; see diagram in Fig. 3.11. The accelerator also includes a

3.9-GHz accelerating cavity (L39) section to remove nonlinearities in the longitudinal phase

space [38, 39]. For this study we explored the use of polynomial laser profile described by

Eq. 3.26 and let α and τ as free parameters.

Figure 3.11: Block diagram of the accelerator configuration explored for the formation of
high-energy ramped bunches. The legend is as follows: “QW” stands for quarter-wave, “L0”
and “L1” are standard 1.3-GHz cryomodule equipped with 8 TESLA-type SCRF cavities,
“L39” is a cryomodule consisting of four 3.9-GHz cavities, and ”BC” is a magnetic bunch
compressor.

The laser-profile parameters and accelerator settings were optimized using a genetic op-

timizer [40] to result in a final distribution with current profile consistent to achieve a high

transformer ratio. The optimized accelerator settings are summarized in Tab. 3.2. In our

optimization, we chose the wakefield structure to be a dielectric-lined waveguide with param-

eters tabulated in Tab. 3.3 and we introduce a longitudinal scaling factor η as free parameter

such that the axial coordinate is scaled following z → z′ = ηz. The optimization converged

to a value η = 0.16. The obtained wakefield and scaled shape are shown in Fig. 3.12 (a).
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Table 3.2: Optimized settings for the accelerator parameters needed to produce and accel-
erate a ramp bunch to ∼ 200 MeV. The parameter α and τ are defined in Eq. 3.26.

parameter value units
laser rms spot size σr 2.5 mm
laser ramp α parameter 19.86 −
laser ramp duration τ 96.8 ps
bunch charge Q 5 nC
peak E-field on cathode 40 MV/m
laser injection phase 71.0 deg (200 MHz)
gun output beam momentum 5.15 MeV/c
acc. voltage L0 165 MV/m
off-crest phase L0 -12.35 deg (1.3 GHz)
acc. voltage L39 24.1 MV
off-crest phase L39 -192.35 deg (3.9 GHz)
beam momentum after L39 ∼ 143 MeV/c
final beam momentum after L1 ∼ 350 MeV/c

For the wakefield calculations we followed the formalism detailed in Ref. [6] and use the first

four modes in the wakepotential used for the beam dynamics simulations.

Given the devised configuration, a one-dimensional model of the longitudinal beam dy-

namics was employed to asses the viability of the required compression and especially ex-

plore the possible impact of nonlinearities in the longitudinal phase space on the achieved

current profile. We considered the current could be longitudinally compressed using a con-

ventional magnetic bunch compressor (BC) with longitudinal linear and second order disper-

sions R56 and T566 ≡ −3
2
R56 [41]. In our simulations the longitudinal dispersion was taken

to R56 = −20 cm following similar designs [42]. The phase of L0 and phase and amplitude

of L39 were empirically optimized and the resulting longitudinal phase space (z0, δ0) was

tracked through the BC via the transformation z0 → z = z0 + R56δ0 + T566δ
2
0. An optimum

set of phases and amplitudes was found and listed in Tab. 3.2 and the sequence of the lon-

gitudinal phase spaces along the injector appear in Fig. 3.13. The final wakefield excited in
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Figure 3.12: Final current distribution (green shaded area) and associated wakefield (blue
traces) for the “ideal” (a) and “realistic” (b) cases of compression discussed in the text. The
head of the bunch corresponds to z = 0

.

the structure with parameters listed in Table 3.3 is displayed in Fig. 3.12 (b) − the achieved

field and transformer ratio values are summarized in Table 3.3. We remark that the inclusion

of a refined model of longitudinal dynamics leads to the apparition of features [e.g. a small

current spike in the bunch tail; see Fig. 3.12 (b) or 3.13 (d)] that were absent in the optimiza-

tion process implementing a simple scaling of the longitudinal coordinates; see Fig. 3.12 (a).

The origin of the small current spike can be traced back to the nonlinear correlation imposed

by space charge in the early stages of the bunch-transport process (i.e. in the drift space

upstream of L0); see Fig. 3.13 (a). Nevertheless the achieved peak field and transformer
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Figure 3.13: Snapshots of the longitudinal phase spaces and associate current profiles (red
traces) upstream of L0 (a) and downstream of L0 (b), L39 (c) and BC (d). Simulations up
to L39 are carried with astra whereas a one-dimensional longitudinal-dynamics model is
used for BC2. The head of the bunch corresponds to z > 0.

ratio as the bunch passes through the DLW are very close (within 10%) to the ones obtained

with the scaled distribution. These results indicate that our proposed injector concept ap-

pears to produce the required current profile. Further studies, including a transverse beam

dynamics optimization and the inclusion of collective effects such as coherent synchrotron

radiation and space charge downstream of L39 and throughout the bunch compressor, will

be needed to formulate a detailed design of the injector. We nevertheless stress that the

simple model presented above confirms a plausible longitudinal-beam-dynamics capable of
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preserving the formed current profiles after acceleration and compression. The final energies

and peak currents are all within the parameters suggested in Ref. [8].

Table 3.3: Dielectric-line waveguide (DLW) parameters and resulting wakefield values us-
ing the current profile shown in Fig 3.12. The “ideal-” and “realistic-compression” entries
respectively correspond to the cases when the final current profile is obtained via a simple
longitudinal-axis scaling or via particle tracking.

parameter, symbol value units
DLW inner radius, ri 750 µm
DLW outer radius, ro 795 µm
DLW relative permittivity, εr 5.7 –
DLW fundamental mode, f1 369.3 GHz
ideal compression:
Peak decelerating field, |E−| 14.01 MV/m
Peak accelerating field, |E+| 75.55 MV/m
transformer ratio, R 5.39
realistic compression:
Peak decelerating field, |E−| 12.84 MV/m
Peak accelerating field, |E+| 63.87 MV/m
transformer ratio, R 4.95

We finally note that the generated current profiles are capable of supporting electric fields

and transformer-ratios in a DLW structure with performances that strike a balance between

the two cases listed as “case 1” and “case 2” in Table 1 of Ref. [8]; see Tab. 3.3. A simple

estimate indicates that our drive bunch would require a DWFA linac of ∼ 30 m in order to

accelerate an incoming 350-MeV witness bunch to a final energy of ∼ 2 GeV.
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3.5 Experimental Generation and Characterization of Electron

Bunches with Ramped Current Profiles in a Dual-Frequency

Superconducting Linear Accelerator

It has long been recognized that linacs operating at multiple frequencies could be used to

correct for longitudinal phase space (LPS) distortions and improve the final peak current [43,

44]. We show analytically and demonstrate experimentally how a two frequency linac could

be operated to tailor the nonlinear correlations in the LPS thereby providing control over

the current profile.

We first elaborate the proposed method using a 1D-1V single-particle model of the LPS

dynamics and take an electron with coordinates (z, δ) where z refers to the longitudinal

position of the electron with respect to the bunch barycenter (in our convention z > 0

corresponds to the head of the bunch) and δ ≡ p/〈p〉− 1 is the fractional momentum spread

(p is the electron’s momentum and 〈p〉 the average momentum of the bunch). Considering a

photo-emission electron source, the LPS coordinates downstream are (z0, δ0 = a0z0 + b0z
2
0 +

O(z30)) where a0, and b0 are constants that depend on the bunch charge and operating

parameters of the electron source. For sake of simplicity we limit our model to second order

in z0 and δ0. Next, we examine the acceleration through a linac operating at the frequencies

f1 and fn ≡ nf1 with total accelerating voltage

V (z) = V1 cos(k1z + ϕ1) + Vn cos(knz + ϕn), (3.28)

where V1,n and ϕ1,n are respectively the accelerating voltages and operating phases of the two

linac sections, and k1,n ≡ 2πf1,n/c. In our convention, when the phases between the linac

sections and the electron bunch are ϕ1,n = 0 the bunch energy gain is maximum (this is refer
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to as on-crest operation). Under the assumption k1,nz0 � 1 and neglecting non-relativistic

effects, the electron’s LPS coordinate downstream of the linac are

(zl = z0, δl = alz0 + blz
2
0), (3.29)

where

al ≡ a0 − e(k1V1 sinϕ1 + knVn sinϕn)/Ēl, (3.30)

bl ≡ b0 − e(k21V1 cosϕ1 + k2nVn cosϕn)/(2Ēl) (3.31)

with e being the electronic charge and Ēl the beam’s average energy downstream of the

linac. Finally, we study the passage of the bunch through an achromatic current-enhancing

dispersive section [henceforth referred to as “bunch compressor” (BC)]. The LPS dynamics

through a BC is approximated by the transformation

zf = R56δl + T566δ
2
l , (3.32)

where R56 (also referred to as longitudinal dispersion), and T566 are the coefficients of the

Taylor expansion of the transfer map 〈zf |δl〉 of the BC. Therefore the final position is given

as function of the initial coordinates following

zf = afz0 + bfz
2
0 , (3.33)

where

af ≡ 1 + alR56, (3.34)
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and

bf ≡ blR56 + a2l T566. (3.35)

Taking the initial current to follow the Gaussian distribution

I0(z0) = Î0 exp[−z20/(2σ2
z,0)], (3.36)

(where Î0 is the initial peak current), and invoking the charge conservation

If (zf )dz = I0(z0)dz0, (3.37)

gives the final current distribution

Iuf (zf ) = Î0/∆
1/2(zf ) exp[−(af + ∆1/2(zf ))

2/(8b2fσ
2
z,0)]Θ[∆(zf )] (3.38)

where ∆(zf ) ≡ a2f + 4bfzf and Θ() is the Heaviside function. The latter current distribution

does not include the effect of the initial uncorrelated fractional momentum spread σuδ,0. The

final current, taking into account σuδ,0, is given by the convolution

If (zf ) =

∫
dz̃fI

u
f (z̃f ) exp[−(zf − z̃f )2/(2σ2

u)] (3.39)

where σu ≡ R56σ
u
δ,0. The final current shape is controlled via af and bf and can be tailored

to follow a linear ramp as demonstrated in Fig. 3.14.

The experiment described in this section was performed at the Free-electron LASer in

Hamburg (FLASH) facility [45]. In the FLASH accelerator, diagrammed in Fig. 3.15, the

electron bunches are generated via photoemission from a cesium telluride photocathode

located on the back plate of a 1+1/2 cell normal-conducting rf cavity operating at 1.3
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Figure 3.14: Analytically-computed current profiles for several values of bf for fixed af = 2.5
(a) and for several values of af with bf = 0.7 (b). The numbers in (a) [resp. (b)] are the
values of bf [resp. af ]; for all the cases σu = 0.05.

GHz on the TM010 π-mode (rf gun). The bunch is then accelerated in a 1.3-GHz and 3.9-

GHz superconducting accelerating modules (respectively ACC1 and ACC39) before passing

through a bunch compressor (BC1). The ACC39 3rd-harmonic module was installed to

nominally correct for nonlinear distortions in the LPS and enhance the final peak current of

the electron bunch [46]. Downstream of BC1, the bunch is accelerated and can be further

compressed in BC2. A last acceleration stage (ACC4/5/6/7) brings the beam to its final

energy (maximum of ∼ 1.2 GeV). The beam’s direction is then horizontally translated using

a dispersionless section referred to as dogleg beamline (DLB). Nominally, the beam is sent to

a string of undulators to produce ultraviolet light via the self-amplified stimulated emission

free-electron laser (FEL) process. For our experiment, the bunches were instead vertically

sheared by a 2.856-GHz transverse deflecting structure (TDS) operating on the TM110-like

mode and horizontally bent by a downstream spectrometer [47]. Consequently the transverse

density measured on the downstream Cerium-doped Yttrium Aluminum Garnet (Ce:YAG)

scintillating screen is representative of the LPS density distribution. The horizontal and

vertical coordinates at the Ce:YAG screen are respectively xs ' ηδF , where η ' 0.75 m is
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the horizontal dispersion function, and ys ' κzF where κ ' 20 is the vertical shearing factor

and (zF , δF ) refers to the LPS coordinate upstream of the TDS. The exact values of η and

κ are experimentally determined via a beam-based calibration procedure.

Table 3.4: Settings of accelerator subsystems relevant to the LPS dynamics used in the
experiment and simulations.

parameter symbol value unit
ACC1 voltage V1 [140-157] MV
ACC1 phase ϕ1 [-10,10] deg
ACC39 voltage V3 [13,21] MV
ACC39 phase ϕ3 [160-180] deg
ACC2/3 voltage V1,2−3 311 MV
ACC2/3 phase ϕ1,2−3 0 deg
ACC4/5/6/7 voltage V1,4−7 233.9 MV
ACC4/5/6/7 phase ϕ1,4−7 0 deg

BC1 longitudinal dispersion R
(1)
56 ∼ 170 mm

BC2 longitudinal dispersion R
(2)
56 ∼ 15 mm

Single-bunch charge Q 0.5 nC
Bunch energy E ∼ 690 MeV

The accelerator parameters settings are gathered in Tab. 3.4. The nominal settings of

BC2 were altered to reduce its longitudinal dispersion R
(2)
56 and the ACC2/3 and ACC4/5/6/7

accelerating modules were operated on crest. Such settings insure that the BC2 and the DBL

sections do not significantly affect the LPS beam dynamics. Therefore the measured current

profile is representative of the profile downstream of BC1.

In order to validate the simple analytical model described above, numerical simulations

of the LPS beam dynamics were carried using a multi-particle model. The simulations also

enable the investigation of possible detrimental effects resulting from collective effects such

as longitudinal space charge (LSC) and beam self interaction via coherent synchrotron radia-

tion (CSR) [48]. In these simulations, the beam dynamics in the rf-gun was modeled with the

particle-in-cell program astra [27] and the obtained distribution was subsequently tracked
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Figure 3.15: Diagram of the FLASH facility. Only components affecting the longitudinal
phase space beam (LPS) dynamics of the bunches are shown. The acronyms ACC, BC, and
DBL stand respectively for accelerating modules, bunch compressors, and dogleg beamline
(the blue rectangles represent dipole magnets). The transverse deflecting structure (TDS),
spectrometer and Ce:YAG screen compose the LPS diagnostics.

in the accelerating modules using a 1D-1V program that incorporates a one-dimensional

model of the LSC. The program csrtrack [49], which self-consistently simulates CSR ef-

fects, was used to model the beam dynamics in the BC1, and BC2 sections. An example of

simulated LPS distributions and associated current profiles computed for different settings

of ACC1 and ACC39 parameters appear in Fig. 3.16. The results indicate that the pro-

duction ramped bunches is possible despite the intricate LPS structures developing due to

the collective effects and higher-order nonlinear effects not included in our analytical model.

The simulations also confirm that the current profile upstream of the TDS (as measured by

the LPS diagnostics) is representative of the one downstream of BC1.

Figure 3.17 displays examples of measured LPS distributions with associated current

profiles obtained for different settings of ACC1 and ACC39. As predicted, the observed

current profiles are asymmetric and can be tailored to be ramped with the head of the

bunch (z > 0) having less charge than the tail; see Fig. 3.17 (b-d). The latter feature is

in contrast with the nominal compression case at FLASH where the LPS distortion usually

results in a low-charge trailing population as seen in Fig. 3.17 (a).

We now quantify the performance of the produced current profiles to enhance beam-driven

acceleration techniques by considering a drive bunch injected in a cylindrical-symmetric
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Figure 3.16: Simulated LPS distribution [(a) and (b)] with associated current profile down-
stream of BC1 (solid blue trace) and DBL (dash red trace) [(c) and (d)]. The set of plots
[(a), (c)] and [(b), (d)] correspond to different (V1,3, ϕ1,3) settings.

dielectric-lined waveguide (DLW) [50]. The DLW consists of a hollow dielectric cylinder

with inner and outer radii a and b. The cylinder is taken to be diamond (relative elec-

tric permittivity εr = 5.7); and its outer surface is contacted with a perfect conductor; see

Fig. 3.18 (a). The measured current profiles are numerically convolved with the Green’s

function associated to the monopole mode to yield the axial electric field [6]. These semi-

analytical calculations were benchmarked against finite-difference time-domain electromag-

netic simulations executed with vorpal [51]. The transformer ratio is numerically inferred
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as R ≡ |E+/E−| where E− (resp. E+) is the decelerating (resp. accelerating) axial elec-

tric field within (resp. behind) the electron bunch; see Fig. 3.18 (b). The achieved R and

E+ values as the structure geometry is varied are shown in Fig. 3.19. As a ∈ [20, 300] µm

and b ∈ a + [20, 300] µm are varied the wavelengths of the excited wakefield modes change.

The simulations show that profiles (b) and (c) of Fig. 3.17 can yield values of R > 2. A

possible configuration with (a, b) = (20, 60) µm, results in R ' 5.8 with E+ ' 0.75 GV/m;

see corresponding wake in Fig. 3.18 (b). Such high-field with transformer ratio significantly

higher than 2 and driven by bunches produced in a superconducting linac could pave the

way toward compact high-repetition-rate short-wavelength FELs [17].

Finally, the proposed technique could be adapted to non-ultrarelativistic energies using a

two- (or multi-) frequency version of the velocity-bunching scheme [52]. Such an implemen-

tation would circumvent the use of a BC and would therefore be immune to CSR effects.

In summary we proposed and experimentally demonstrated a simple method for shaping

the current profile of relativistic electron bunches. The technique is especially useful to

convert Gaussian current profiles into asymmetric current profiles which can support large

transformer ratios. Additionally, the relativisitic regime in which this scheme was done can

lead to current profiles with large charge densities as well which can support wakefields on

the order of ∼ GV/m. Finally the technique could be further refined by, e.g., including

several harmonic frequencies.

3.6 Flat-beams for DWFA

So far our work has focussed on cylindrically-symmetric DLWs as discussed in 2. An

attractive alternative to cylindrically-symmetric DLWs are slab-symmetric DLWs. Slab-

symmetric DLWs natively mitigate a dipole mode which can deflect a beam and lead to beam
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breakup (BBU) (see Ref. [9]). Although slabs generally offer smaller acceleration gradients,

the open slab geometry allows the possibility of an adjustable inner aperature. Additionally,

the this also reduces the difficulty of practical concerns when aligning DLWs with a beam.

One avenue worth exploring is the use of a “flat-beam” with a slab-symmetric structure,

where in principle smaller gap apertures can be used with flatter beams which ultimately

decreases the fundamental wavelength of the structure and increases the transformer ratio.

A flat beam can be formed using simple linear transformations directly out of a photoin-

jector as proposed in Ref. [53]. The method consists in generating an angular-momentum-

dominated beam (also termed as “magnetized” beam) by immersing the photocathode in an

axial magnetic field. The beam, after acceleration is then transformed into a flat beam using

a set a skew quadrupoles. Upon proper tuning of the transformer, the expected normalized

flat-beam emittances, ε±n , are given by [54]

(ε+n , ε
−
n ) =

(
(εun)2

2βγL , 2βγL
)
, (3.40)

where εun ≡ βγεu is the normalized uncorrelated emittance of the magnetized beam prior

to the transformer, β = v/c, γ is the Lorentz factor, L ≡ 〈L〉/2pz, pz is the longitudinal

momentum, and 〈L〉 ≡ eB0σ
2
c , where e is the electron charge, B0 the axial magnetic field on

the photocathode surface, and σc the root-mean-square (rms) transverse size of the drive-laser

spot on the photocathode. An experimental investigation of angular-momentum-dominated

beams and their flat-beam conversion was pioneered at Fermilab; see Ref. [55, 56]. At FAST

the beam emittance for charge Q ∈ [0.02, 3.2] nC scales as εn⊥ = 2.11Q0.69 µm (where Q

is the charge in nC) according to optimization performed in Ref. [57]. Taking the round-

beam emittance value to correspond to εu = ε⊥, the flat beam emittances will be εn− and

εn+ = (εnu)2/εn−. Therefore requiring the smallest emittance to be εn− = 0.5 µm implies that

εn+ = 50 µm to be consistent with a round-beam emittance of 5 µm yielding to an emittance
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ratio ρ ≡ εn+/ε
n
− = 100. Numerical simulation of the FAST photoinjector setup to provide

flat beams have confirmed this type of scaling.

Consider for example, a ramped bunch (recall R = Nπ) electron bunch with εun = 5 µm.

Figure 3.20(top) presents the transformer ratio and peak accelerating field as a function of ρ

for a 1-nC drive bunch given a structure with half-gap a = 165 µm and dielectric thickness

of 30 µm. If the DLW structure’s gap is varied such that for a given emittance ratio the

condition a = 4σy is satisfied, higher accelerating fields are possible; see Fig. 3.20(bottom).

The total bunch length was taken to be 1.2 mm which leads to an increase of transformer

ratio as a (and consequently the fundamental-mode wavelength) decreases.

The choice of the DLW structure geometry sets the maximum achievable accelerating

field for a given bunch current distribution but is also constrained by the beam’s transverse

emittances. Here, we impose the DLW module to accelerate the incoming 250-MeV beam to

500 MeV within a maximum footprint of 10 m assuming a filling factor of 30% (3 meter total

of active acceleration length). This sets a moderate requirement of ∼ 100 MV/m for the

accelerating field. Taking a cylindrical-symmetric DLW, there are stringent requirements

on the normalized transverse emittance ε⊥ for a given betatron function. Considering a

structure with aperture radius a and length L, and requiring a transmission of 3σ⊥ ≤ a

(where σ⊥ is the transverse beam size at the entrance/exit of the DLW) we can derive such

a relationship; beginning with the usual beam-waist equation for a betatron function β(s)

β(s) = β∗ +
s2

β∗
(3.41)

where β∗ is the minimum betatron value at s = 0, and recalling that the relationship

between betatron function and physical beam size

σ =

√
β(L/2)ε∗

γ
(3.42)
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where ε∗ is the normalized emittance and γ is the Lorentz factor, we can establish

ε⊥ ≤
4γa2β∗2

9(4β∗2 + L2)
, (3.43)

For anticipated betatron functions of ∼ 1 m, the required transverse emittance would

be ε⊥ ' 0.5 µm; see Fig. 3.21. Such a low-emittance value is challenging to achieve for

the anticipated nC charge need in the drive bunch. Simulations indicate that a minimum

emittance around ε⊥ ∼ 5 µm are achievable at the FAST photoinjector for Q = 3.2 nC.

3.7 Experimental Opportunity for DWFA at FAST

The FAST facility at Fermilab is an L-band (1.3-GHz) superconducting linear accelera-

tor, with a high-brightness photoinjector [57], with the possible future inclusion of advanced

phase space manipulations such as flat-beam generation [58] and transverse-to-longitudinal

exchange [59]. One application of FAST is to explore alternative acceleration schemes

based on collinear beam-driven methods including dielectric-wakefield acceleration [10] and

channeling-acceleration [60] methods.

The beamline configuration for our DWFA experiment is diagrammed in Fig. 3.22. The

beamline comprises a L-band RF gun followed by two SCRF accelerating cavities (CAV1 and

2). The RF gun is nested in a pair of solenoidal lenses that can be used to produce beam with

large angular momentum. Such a beam can be decoupled by a set of three skew quadrupole

magnets downstream of CAV2 to produce flat beams− beams with high transverse emittance

ratio − that can then be compressed using a magnetic chicane (BC1). The skew quadrupole

magnets insertion is referred to as round-to-flat-beam transformer (RFBT). Downstream of
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BC1, a triplet is used to focus the beam inside the DLW structure mounted in a 2-way

goniometer; additionally, 2 linear stages will give control over the aperture of the DLW. The

beam is finally drifted to the vertical spectrometer and directed to a Ce:YAG screen (X124).

The screen has a vertical size of 38 mm and located at a dispersion of ηy = 0.44 m permitting

the measurement of beam spectrum of δp/p ∼ 9 % relative momentum spread. The high-

resolution CCD (Prosilica GC 2450) could in principle enable resolution below δp/p ∼ 10−4

for an ideal zero-emittance beam. The zero-charge betatron functions at X124 viewer are

shown in Fig. 3.23 as a function of betatron functions obtained at the waist (αx = αy = 0)

in the DLW structure. The focusing between the DLW structure and X124 screen is solely

achieved by the dipole (no quadrupole magnets are presently installed in this section).

For a vertical beta function of β∗ ' 2 m at the center of the DLW, the resulting β function

at X124 is βX124
y ' 1 m limiting the energy resolution of the spectrometer to 1.8×10−4 (for a

geometric emittance of ∼ 6.3 nm (corresponding to 0.5 µm normalized with a Lorentz factor

γ ' 80).

Finally, a diagnostics station located downstream of the vertical spectrometer will enable

the detection and autocorrelation of THz radiation generated by the bunch passing through

the DLW structure.

Our experiment relies on the production of a flat beam, i.e., a beam with large transverse

emittance ratio [61]. In our setup we produce flat beams with a low vertical emittance to

mitigate horizontal-emittance-dilution effects arising in BC1 via space charge and coherent

synchrotron radiation. Another benefit of this configuration is the low betatron contribution

to the beam size at X124 given a vertical normalized emittance as low as εy ' 0.3 µm.

An important challenge to overcome is the formation of compressed flat beam as described

elsewhere [61].
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3.8 Start-to-end simulations

The start-to-end simulations detailed below from cathode to a spectrometer were per-

formed using particle-in-cell beam-dynamics program including astra [27] and impact-

t [62]. The distribution downstream of the compressor was then matched to a waist at the

DLW structure location with elegant [63]. To model the beam self-interaction with its

wakefield in the DLW, we use a modified version of impact-t described in Ref. [10]. The

dielectric-wakefield model is based on a 3-D Green’s function approach discussed in 2. We

consider a DLW structure composed of two parallel dielectric slabs. The separation between

the inner surface and outer (metallized) surfaces is respectively 2a and 2b. The dielectric

thickness is b − a and its relative permittivity is taken to be εr = 5.7 to correspond to

diamond.

3.8.1 Case of single-mode DLW structures

Single-mode structures have the advantage to produce sinusoidal fields with known wave-

lengths. However since the beam’s energy couples to a single mode, the resulting accelerating

fields are generally smaller than the accelerating gradients achieved in multimode structures.

Due to the limited measurement apparatus in the planned experiment, we must establish

a method of decoding the information from the projected energy modulated beam onto X124.

Figure 3.24(a,b) illustrates the nominal LPS and the associated transverse beam distribution

at the X124 location when no DLW structure is inserted in the beam path.

A complication arising from the long photocathode laser pulse regards the accumulation

of a strong quadratic distortion on the LPS during acceleration in CAV1 and CAV2 which,

after bunch compression results in a highly distorted distribution. The distribution has some
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benefits to the investigation of wakefields as the charge concentration in the bunch head lead

to high peak current (∼ 5 kA) that excites strong wakes while the long trailing electron

population samples this wake over several periods. This feature is clearly demonstrated in

Fig. 3.24(c) where the LPS immediately downstream of a DLW structure with parameters

a=100 µm, b = 120 µm, and εr = 5.7 is shown. The resulting transverse distribution on X124

shows some horizontal bands that correspond to the local maxima of the observed energy

modulations on the LPS. Because of the large number of modulations, some smearing occurs

at X124. In addition, we note that the Cherenkov pattern resulting from the dependence

of the accelerating field on the transverse coordinates can be clearly resolved at X124 and

could provide insightful measurements for precise benchmarking of the 3-D model.

3.8.2 Case of multi-mode DLW structures

As we mentioned above, the high-peak current and narrow width of the bunch head is

capable of exciting the multi-THz regime. Therefore it is interesting to investigate the use

of multi-mode structures which are generally comprised of thichker dielectric thicknesses.

Additionally, this generally leads to higher axial peak fields in the DLW as multiple modes

can constructively add up at the price of an uncontrollable accelerating-field region.

Figure. 3.25 shows examples of LPS and transverse beam distribution simulated at X124

for two dielectric structures with inner radius a = 100 µm and outer radius b = 150 and

200 µm for a DLW length of 2 cm. The experimental advantage for using multimode struc-

tures are the lower number of energy modulations which leads to fewer (and brighter) energy

(horizontal) bands at X124.

For the case of multimode structures the peak accelerating field are 110 and 120 MV/m for

respectively a dielectric thickness of δ = 50 [Fig. 3.25(a,b)] and 100 µm [Fig. 3.25(c,d)] while
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the single-mode structure was supporting a field amplitude of 105 MV/m [Fig. 3.24(c,d)].

We again mention that using a flatter beam would allow smaller inner-apertures which could

lead to larger accelerating fields. However, due to the limited X124 screen size of 38 mm,

the measurement of larger accelerating gradients would requier either shorter length DLWs

or lower charge bunches.
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Figure 3.17: Snapshots of the measured longitudinal phase spaces (left column) and associ-
ated current profiles (right column) for different settings of the ACC1 and ACC39 accelerat-
ing modules. The values (V1, ϕ1;V3, ϕ3) [in (MV,◦,MV,◦)] are: (150.5, 6.1; 20.7, 3.8), (156.7,
3.8; 20.8, 168.2), (155.6, 3.6; 20.6, 166.7), and (156.8, 4.3; 20.7, 167.7) for respectively case
(a), (b), (c), and (d).
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Figure 3.18: Cylindrical-symmetric dielectric-loaded waveguide considered (a) and axial
wakefield produced by the current profile shown in Fig. 3.17 (c) for (a, b)=(20,60) µm.
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Figure 3.19: Simulated transformer ratio versus peak accelerating field (a) for the four
measured current profiles (displayed as different colors with label corresponding to cases
shown in Fig. 3.17). Transformer ratio (false color map) as a function of the DLW inner
radius a and dielectric layer thickness b− a with corresponding |E+| shown as isoclines with
values quoted in MV/m for case (c) of Fig. 3.17.
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Figure 3.20: Peak accelerating electric field (blue trace) and transformer ratio (red trace)
as a function of emittance ratio ρ = ε+n /ε

−
n for a 1 nC electron bunch with 4D emittance

εun ≡ ε+n ε
−
n = 5 µm. The structure parameters is a = 165 µ and b − a = 30 µm (top) and

taken to be variable such that a = 4σy and b− a = 30 µm (bottom). The bunch is taken to
be linearly-ramped with total length of 1.2 mm.
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Figure 3.21: Required normalized transverse emittance (µm colorscale) as a function of β∗

function and DLW structure length. The DLW inner aperture is taken to be a = 165 µm
and the beam Lorentz factor is γ = 500.
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Figure 3.22: Layout of the FAST photoinjector. L1 and L2 are solenoids, and CAV1 and
2 SCRF cavities. The red and green rectangle represent quadrupole magnets. X124 is a
Ce:YAG screen



59

Figure 3.23: The zero-charge betatron functions (left) and the transverse RMS beam sizes
(right) along the FAST accelerator with flat beams.

Figure 3.24: Longitudinal phase spaces (a,c) and associated transverse distributions at X124
(b,d) without (a,b) and with (c,d) a DLW structure. The DLW structure used for (c,d) has
parameters a=100 µm, b = 120 µm, and εr = 5.7
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Figure 3.25: Longitudinal phase spaces (a,c) and associated transverse distributions at X124
(b,d) for a dielectric thickness of δ = 50 (a,b) and 100 µm (c,d) DLW structure. The DLW
structure other parameters are a = 100 µm, b = a+ δ, and εr = 5.7.



CHAPTER 4

BALLISTIC BUNCHING AND BEAM MANIPULATION

4.1 Introduction

Low-energy (. 10 MeV) electron beams are conventionally produced in photoemission

electron sources based on radio frequency (RF) guns or “photoinjectors”. The final bunch

length downstream of a photoinjector is dictated by the initial parameters including the

photocathode-laser pulse duration, transverse spot size, the electric-field amplitude in the

gun cavity and its phase relative to the laser. Typically, bunch lengths on the order of

picoseconds are commonly produced in L- and S-bands RF guns. Shortening these bunches

or producing trains of sub-ps microbunches is appealing to a variety of applications including

ultra-fast electron diffraction [64, 65], coherent accelerator-based, e.g., THz light sources [66,

67], and injectors for short-wavelength advanced-accelerator concepts [68, 69].

To date, bunch compression to produce kA peak currents is often realized after accel-

eration to & 100 MeV by employing dispersive sections arranged as, e.g., magnetic chi-

canes [70]. Alternative methods to shorten a relativistic bunch also include velocity bunch-

ing [71, 72, 73, 74], and ballistic bunching using an accelerating cavity operating at zero

crossing. The latter method demonstrated bunching at the sub-100-fs time scale [29] and

could possibly produce shorter temporal structures [75]. Similar methods have been ex-

tended to the mm-wave regime, e.g., by coupling laser-produced THz pulses to the beam

using undulators [76] or dielectric waveguides [77].
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In addition, several techniques have demonstrated narrow-band THz radiation genera-

tion with photoinjector beams by coupling a density-modulated bunch with electromagnetic-

radiation mechanisms (using e.g. coherent transition radiation) [20, 22, 46, 78, 79]. Among

these techniques, two of them are based on impressing a density modulation using a temporally-

modulated photocathode-laser pulse [78, 79, 80]. The use of such a temporally- modulated

laser was also experimentally shown to support the formation of short-current spikes via

wave breaking seeded by nonlinear longitudinal space-charge effects [81].

Recently, a technique to produce trains of microbunches based on a dielectric-lined waveg-

uide (DLW) was realized in a ∼ 70-MeV accelerator [82]. In the latter experiment a density

modulation was produced using a small chicane to provide the longitudinal dispersion nec-

essary to convert the energy modulation imparted by the beam self-interaction with its

short-range wakefield in the DLW structure.

In this chapter, we propose a simple method extending the mechanism proposed in

Ref. [82] to low-energy beams. In our configuration a ∼ 5-10 MeV ps-duration beam is

energy-modulated as it passes through a DLW and ballistically bunches in a subsequent drift.

Our approach is similar to the bunching technique commonly used in klystrons [83, 84]. Ow-

ing to the low intrinsic energy spread typically achieved in photoinjectors, final beam currents

in excess of kA’s could be produced.

4.2 Ballistic compression from wakefield-induced energy

modulations

In contrast with an energy modulation imparted by external fields (e.g. from lasers

or RF cavities), the modulation imparted via wakefields depends on the longitudinal bunch
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Figure 4.1: Charge distributions (top) and corresponding wake potential (bottom) for the
same structure parameters as shown in Fig. 2.4 and for a 1-nC Gaussian bunch with variance
(Gaussian distribution) or hard-edge half size (other distributions) of 1 mm. The green,
blue, red, and turquoise traces respectively correspond to the case of a Gaussian, parabolic,
uniform, and linearly-ramped current distributions. The head of the bunch is at z ≤ 0.

shape. In particular, given the selected parameters for the DLW structure, one should ideally

select an electron-bunch distribution with spectral contents capable of exciting the mode(s)

supported by the structure; see Fig. 4.1.

In order to illustrate the proposed concept we elaborate a simple model based on the

ideal case of a line-charge electron bunch with a parabolic charge-density profile Λ(z) =

[3Q/(2a3)](a2− z2) for |z| ≤ a where Q is the total bunch charge and a the half width of the
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distribution; see Fig. 4.2(a). The corresponding change in energy along the bunch is given

by

∆E(z) '
+∞∑
m=1

E {sin[km(z + a)] (4.1)

− kma cos[km(z + a)] + kmz} ,

where E ≡ 3κmLdlwQ
2k3ma

3 . Considering only the fundamental mode (m = 1) and assuming a

“cold” initial LPS with no correlation so that (zi, δi = 0) (for all i), where zi and δi are

respectively is the axial coordinate and fractional momentum spread associated to the ith

electron. The final fractional momentum spread downstream of the DLW structure becomes

δf (zf ) '
Ei + ∆E(zf )

Ef
− 1, (4.2)

where Ei is the bunch’s initial mean energy, Ef ≡ Ei + 1/Q
∫

∆E(z)Λ(z)dz its final mean

energy, and zf = zi. For the case of short modulation ka � 1 the final energy can be

approximated as Ef ' Ei − 3Ldowκ1Q
2a4k41

' Ei

After a section with longitudinal dispersion R56, the energy modulation induces a density

modulation and the final longitudinal coordinate of an electron is mapped as zd = zf +R56δf

under a linear single-particle dynamics approximation.

We first consider the case when the root-mean-square (rms) bunch length satisfies σz,i ≡

〈z2i 〉
1/2 & λ1 ≡ 2π/k1 so that an energy modulation along the bunch can be impressed;

Fig. 4.2(b, red trace). In such a case the second term in Eq. 4.1 dominates the short-

wavelength modulation structure and the final longitudinal coordinate is approximately given

by

zd ' zi −
R56E
Ei

cos[k1(zf + a)]. (4.3)
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Figure 4.2: Charge distributions (a) and corresponding wake potential (b) for two cases of
ratio between the rms bunch length σz and fundamental-mode wavelength λ1. The DLW
structure parameters are identical to one used in Fig. 2.4. The head of the bunch corresponds
to z ≤ 0. The wake potential associated to the σz = 0.5λ1 case is scaled by a factor 50 for
clarity.

At the zero-crossing locations, i.e. the locations along the bunch zf,n such that δf (zf,n) ∝

cos[k1(zf,n + a)] = 0, the local LPS correlation is given by

C ≡ dδf
dzf

∣∣∣∣
zf,n

' k1E
Ei

. (4.4)

The maximum bunching occurs at these zero-crossing points when the following beamline

provides a longitudinal dispersion R56 = − 1
C . The characteristic length of the microbunches

formed is approximately given by σz ' R56σ̃δ where σ̃δ is the uncorrelated (or slice) rms

fractional momentum spread. The microbunches’ separation is ∆z ≡ zf,n − zf,n−1 ' λ1 for
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an incoming beam with vanishing correlated energy spread.

At relativistic energies, the longitudinal dispersionR56 necessary to form the microbunches

is often provided by a dispersive section, e.g., a bunch-compressor chicane [70] as accom-

plished in Ref. [82]. Here we note that at energies below ∼ 10 MeV (non-ultra-relativistic

regime), the large LPS slope resulting from the large axial fields supported in a DLW requires

a relatively small R56 that can be readily produced by a drift space. A drift with length D

has a longitudinal dispersion

R56 ' −
D

γ2
, (4.5)

where γ is the bunch’s Lorentz factor and we take β ≡ (1− 1/γ2)1/2 ' 1 for simplicity.

Practically, for a ∼ 5-MeV electron bunch passing through a 10-cm long DLW structure

capable of supporting ∼ 0.5 MV/m peak field a “local” chirp C ' 103 m−1 can be obtained

for a 0.5-mm modulation wavelength. The corresponding local density spike could form via

ballistic bunching after a drift of length below D ≤ 1 m. The expected modulation amplitude

∼ 0.5 MeV is much larger than the typical uncorrelated energy spread of a few keV routinely

achieved in RF guns [85, 86]. Additionally, the relatively low R56 and small uncorrelated

energy spread are also beneficial to the production of very short (< 100-fs) density spikes.

This simple estimate motivates further investigation of the scheme using a bunch generated

by a conventional photoemission electron gun.

In addition, furthering our point about the dependence of the energy modulation on

bunch shape we now examine the case when the rms bunch length fulfills σz,i ' λ1/2; see

Fig. 4.2(b, blue trace). In this regime, the induced energy change along the bunch produces
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an energy depression between the head and tail of the bunch and has the proper sign to

be compressed via ballistic bunching. Although the introduced chirp is nonlinear, it can

eventually lead to the production of a high peak current. This approach, however, only

bunches a fraction of the bunch and actually debunches the head of the bunch. Despite this

drawback, this scheme is appealing given its simplicity and absence of need for a precisely

synchronized external field as used in ballistic bunching using a buncher cavity [29]. This

passive bunching method is therefore inherently self-synchronized and in principle not subject

to time jitter (the main source of jitter is associated to charge fluctuations that impact the

imparted energy modulation and could consequently result in shot-to-shot fluctuations of

the peak current).

Figure 4.3: Overview of the photoinjector setup used for the numerical simulations. The
distances ZSOL and ZDLW correspond respectively to the location of the center of the solenoid
and DLW structure referenced to the photocathode surface, and Zdrift represents the drift
distance downstream of the DLW structure necessary for ballistic bunching.

Finally, it should be pointed out that higher-order (e.g. dipole) modes can also affect

the bunch transverse dynamics but are neglected in the present treatment as we assume

the bunch is cylindrical-symmetric and axially centered on the DLW axis. Given the short

length of the DLW considered in the remainder of this chapter, possible detrimental effects

on the transverse beam dynamics can be practically corrected, e.g., by mounting the DLW

structure on translational stages.
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4.3 Numerical modeling and analysis

To explore the possibilities discussed in the previous section we perform beam-dynamics

simulations. The numerical simulations are carried with the beam-dynamics program as-

tra [27] (see 2.4).The beam-DLW interaction is modeled via the Green’s function approach

briefly outlined above and detailed in Ref. [87]. The Green’s function employed in our sim-

ulations throughout this chapter is constructed using the wake associated to the four modes

of the considered structure as supported by Fig. 2.4. In most of our simulations the elec-

tron bunch is modeled as an ensemble of 100,000 macroparticles. The grid used to bin the

macroparticle distribution within the cylindrical-symmetric space charge algorithm is typi-

cally setup with a number of radial and longitudinal bins nr = 11 and nz = 500. The large

number of longitudinal bins ensures a temporal resolution at the sub-50-fs scale is realized

for most of the current distribution generated throughout this chapter. We note however,

that binary collisions (Boersch effect [88]) are not taken into account in the mean-field space-

charge algorithm employed in astra and might result in a degradation of the peak current

quoted in this chapter.

To characterize the temporal structure of the bunch, we represent the macroparticles’

temporal distribution as Λ(z) = 1
N

∑N
i=1 δ(z− zi) and compute the bunch form factor (BFF)

F̃ (ω) = |1/(2π)
∫ +∞
−∞ Λ(z/c)e−iωt|2 as

F̃ (ω) =
1

N2

(∣∣∣∣ N∑
i

cos
ωzi
c

∣∣∣∣2 +

∣∣∣∣ N∑
i

sin
ωzi
c

∣∣∣∣2
)
, (4.6)

where N is the number of macroparticles used in the simulation. The BFF is commonly

used to characterize the performance of accelerator-based radiation source [89]. We note

that in some cases, e.g. for the production of short-wavelength coherent radiation, transverse
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suppression effects might be prominent and should be properly accounted for by utilizing a

three-dimensional expression for the BFF; see, e.g., Ref. [48].

4.3.1 Sub-picosecond bunch train formation

We first investigate the practical realization of the scheme described in section 4.2 to

produce trains of sub-picosecond bunches and to demonstrate the versatility of the method,

we consider two examples of implementation. The generic setup consists of an RF-gun

electron source followed by a DLW as diagrammed in Fig. 4.3. Downstream of the DLW the

beam is focussed with a second solenoid, e.g., to produce a waist at the location a transition-

radiation target. The RF gun is taken to be an S-band (2.856 GHz) 1/2-cell cavity similar

to the one currently in use at the linac coherent light source (LCLS) [26]. Similar results

are then confirmed using a 1/2-cell L-Band (1.3 GHz) gun similar to the one used at the

FLASH facility in DESY [90].

The photocathode-laser distribution was chosen to follow a plateau temporal distribution

and its transverse size along with the location of the DLW, and solenoid strength were

optimized using a multi-objective optimizer [40] to maximize beam transmission through the

structure and minimize the transverse beam size at the DLW center. The list of optimized

operating parameters are gathered in Tab. 4.1 (“S-band” column). We note that the choice of

the DLW parameters is a compromise between modulation wavelength λ1, energy modulation

amplitude – which affects the bunching length – and beam transmission. For example,

a shorter DLW structure relaxes the requirements on beam sizes and emittances at the

structure, but necessitates a longer drift to bunch the beam (as the amplitude of the imparted

energy modulation is smaller than for a longer structure). Additionally, the number of

potential microbunches depends on the incoming bunch length and λ1. For example, a
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Table 4.1: Beamline settings and DLW-structure parameters used in the astra simulations.
The beamline configuration with some of the associated parameters is depicted in Fig. 4.3.

S-Band L-Band
parameter units
Laser pulse RMS duration 3 7 ps
Laser pulse rise time 100 100 fs
Laser RMS spot size 0.72 1.1 mm
Initial charge 1 1 nC
Peak field on cathode 120 34 MV/m
Solenoid 1 position 0.20 0.0 m
Solenoid 1 strength 0.26 0.17 T
Solenoid 2 position 1.35 1.0 m
Solenoid 2 strength 0.45 0.15 T
DLW position 0.9 0.34 m
DLW inner radius (a) 350 500 µm
DLW outer radius (b) 363 550 µm
DLW length 11 4 cm
DLW fund. frequency f1 1000 400 GHz
Transmission through DLW 85 98 %
Average kinetic energy 6.1 3.8 MeV

Gaussian bunch with rms length σz will typically result in the formation of Nb ∼ 4σz/λ1

microbunches. Additionally, varying σz for a given bunch charge and fundamental-mode

wavelength λ1 affects the initial peak current and consequently the amplitude of the imparted

energy modulation as inferred from Eq. 4.2.

We present, for the “S-band” case listed in Tab. 4.1, the evolution of the BFF over

a frequency range f ≡ ω
2π
∈ [0.5, 3.5] THz as a function of the drift distance from the

DLW exit (zdrift) in Fig. 4.4(a). The corresponding longitudinal-density evolution appears

in Fig. 4.4(b). For this set of parameters, 10 microbunches are produced and a maximum

bunching of F̃ (ω1) ' 0.20 is obtained at the DLW fundamental mode’s wavelength λ1 '

382 µm. In addition, harmonics of the fundamental mode f1,n = nf1 are observed. For the

selected DLW parameters and the corresponding thin dielectric layer, only the fundamental

mode significantly influences the bunch dynamics.
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Figure 4.4: Bunch form factor (BFF) (a) and bunch longitudinal density (b) evolution as
a function of the drift length referenced with respect to the DLW exit. The simulations
correspond to the parameters listed under the “S-band” column in Tab. 4.1.

The current and LPS distributions at the DLW exit and at the location of maximum

bunching (at s ' 1.30 m from the photocathode) appear in Fig. 4.5. Peak currents on the

order of 1 kA are achieved for a beam with mean momentum of 〈pz〉 ' 6.12 MeV/c. The

shortest current spike generated has an full-width half-max (fwhm) duration of ∼ 30 fs.

These results are comparable to the ones experimentally obtained through wave-breaking

in Ref. [81] albeit with a much higher contrast ratio [91]. The origin of the non-uniform
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Figure 4.5: Current profiles (a) and associated longitudinal phase spaces (LPS) (b) simulated
at the exit of the DLW (blue trace) and at the location of maximum bunching (red trace)
z = 1.3 m from the photocathode. Bunch form factor (BFF) (c) obtained at z = 1.3 m from
the photocathode. The simulations correspond to the parameters listed under the “S-band”
column in Tab. 4.1.

bunching across the beam with peak-to-peak variation in the microbunch current is twofold.

First, the slice-energy-spread positional variation along the bunch affects the shortest struc-

ture achievable at a given location. And secondly, the LPS prior to the DLW has initial

correlations (as seen on the blue density plotted in Fig. 4.5(b)) which affect the bunching

uniformity across the microbunches. This latter initial correlation is also responsible for the
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apparent “walk-off” feature (the microbunches spread apart from each others as they drift)

of the microbunches visible in Fig. 4.4(b). Figure 4.5(c) indicates strong harmonic content at

the second and third harmonic frequencies of f1 – also observed at the location of maximum

bunching.

Moreover, the higher harmonics are limited by the precision of the micro-bunch spacing

within the bunch; a higher frequency DLW will lead to more micro bunches which will

be more limited by the initial correlated LPS. We can investigate this feature by using a

lower frequency structure of 500 GHz in the same context of the 1 THz example illustrated

above. The current and LPS is shown in Fig. 4.6(a,b) as well as the associated BFF over

the frequency range (0.25 THz, 10 THz), as shown in Fig. 4.6(c) for maximum compression

(red trace). The very strong higher harmonic content is notably due to larger and more

precisely spaced microbunches. Additionally, we may want to suppress higher harmonics or

amplify the fundamental; this could easily be done by selecting a bunch which is under or

over-compressed such that the micro-bunches span a larger spatial extent; see Fig. 4.6(a,b,c)

blue trace.

Finally, the evolution of the transverse beam sizes and emittance is respectively shown

in Fig. 4.7(a) and (b) for the case presented in Fig. 4.5. The addition of a second solenoid

at s ' 1.2 m can transversely focus the beam down to σx = σy ' 45 µm at an axial location

close to the maximum bunching; see Fig. 4.7(c). The simulated small rms beam size confirms

that the one-dimensional BFF approach adopted earlier can accurately be used to estimate

the properties of radiation emitted at wavelengths λ � γ−1σx,y ∼ 5 µm. It is therefore

applicable to the THz regime. The small transverse size could also permit the use of a

second DLW as a narrowband THz radiator as explored in Ref. [92].

The location of maximum bunching depends primarily on the wakefield amplitude com-

pared to the average bunch energy. Operating the RF gun at higher peak fields leads to

larger ballistic bunching lengths downstream of the DLW structure and vice versa. Alter-
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Figure 4.6: Current profiles (a) and associated longitudinal phase spaces (LPS) (b) simulated
at maximum compression 31 cm downstream of the DLW (red traces) and at the location
of slight over-compression 52 cm downstream of the DLW (blue traces). Bunch form factor
(BFF) (c) obtained at the similar locations. The simulations correspond to the parameters
listed under the “S-band” column in Tab. 4.1 with the exception of the geometric parameters
of the DLW structure selected to be a = 350 µm, and b = 393 µm.
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Figure 4.7: Transverse horizontal σx and vertical σy rms beam sizes (a), corresponding
transverse emittances (b) and bunch form factor (BFF) (c) evolution along the beamline.
The BFF is evaluated at f1 = 1 THz (blue trace) and at the second (green trace) and
third (red trace) harmonics. The simulations correspond to the parameters listed under the
“S-band” column in Tab. 4.1.

natively, shorter bunching lengths can be achieved by decreasing the bunch length at the

cost of a lower number of microbunches. To confirm the applicability of our concept to

other configurations we carried a similar study as the one presented above for the case of an

L-band RF gun.

For this case we consider the setup available at the Fermilab’s A0 photoinjector [93] which

incorporates a first-generation L-band gun used at the decommissioned Tesla-test facility at

DESY [94]. The gun is nested in three solenoidal lenses. An optimization similar to the

one carried for the S-band case was conducted and the resulting operating parameters are

displayed in Tab. 4.1 (“L-band” column). For completeness the BFF and longitudinal density

evolution downstream of the DLW are shown in Fig. 4.8. As in the S-band case we observe

strong bunching at the DLW fundamental mode’s frequency (in this case λ1 ' 750 µm as the

DLW parameters are different). But in contrast with the S-band case the higher-harmonic

content of the BFF are significantly suppressed. The change in the fundamental frequency
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Figure 4.8: Bunch form factor (BFF) (a) and bunch longitudinal density (b) evolution as
a function of the drift length referenced with respect to the DLW exit. The simulations
correspond to the parameters listed under the “L-band” column in Tab. 4.1.

as the bunch drifts downstream of the DLW appear stronger than for the S-band case and

is due to a more prominent “walk-off” effect due to the lower beam energy.
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4.3.2 Passive Bunching

We now turn to another potential application of the scheme detailed in Section 4.2 to

bunch or shape an electron beam produced via photoemission from an RF gun (this corre-

sponds to the case when σz . λ1). Simply speaking we are interested in maximizing peak

currents and charge densities as well as longitudinally tailoring a bunch for various applica-

tions (see 5).

To illustrate our point, we first consider the case of the L-band gun just discussed in

the previous section and instead of using the DLW parameters of Tab. 4.1, we consider a

structure with inner radius a = 650 µm to produce a global correlated energy spread as

the fundamental-mode wavelength of the DLW becomes comparable to the bunch length.

As mentioned earlier, the inherent nonlinear LPS distortion exhibits a correlation between

the depleted energy location and tail that has the proper sign for compression via ballistic

bunching.

We exemplify this possibility by exploring the change in the maximum peak current

downstream of a DLW structure with different dielectric thicknesses. The DLW is chosen

to have a fixed inner radius a = 650 µm and the mode’s wavelength is varied with different

dielectric thicknesses. Although thicker dielectrics generally lead to a larger population of

modes, the Gaussian shape employed in this study mostly excites the fundamental. The re-

sults appear in Fig. 4.9 and indicate that a peak current on the order of ∼ 10 kA is attained

when the fundamental-mode wavelength is ∼ 2.06 mm (corresponding to σz = 1.01 mm). It

should be pointed out that the quoted currents are most likely over estimated due the ab-

sence of collisional effects in the space-charge algorithm implemented in astra. The latter

wavelength corresponds to a structure with outer radius b = 855 µm (or dielectric thickness
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Figure 4.9: Maximum peak current as function of the fundamental-mode wavelength λ1.
The observed noise comes from numerical errors in precisely determining the value of the
the axial position where the peak current is maximized. These simulations are carried with
the beam parameters summarized in Tab. 4.1 “L-band” column but for a DLW structure
with inner radius a = 650 µm. The fundamental-mode wavelength is varied by changing the
structure outer radius b.

τ ≡ b − a = 205 µm). The associated current profiles and LPS appear in Fig. 4.10 and

illustrates the role of the initial longitudinal emittance of the bunch before the DLW (i.e.

the maximum peak current is achieved for an initial axial slice with smallest slice energy

spread). In Fig. 4.10 only 7.1% of the population resides within the current spike while

the rest contributes to the formation of longitudinal tails. This low-current population of

the bunch could in principle be reduced by exploring some energy-transverse correlations in

conjunction with transverse collimators. Also, due to the relatively large inner radii needed

to support wavelengths comparable to the bunch length, this technique can in principle eas-

ily be scaled to higher bunch charges. Finally, we note that the current profiles shown in

Fig. 4.10 can actually find applications, e.g. to investigate wakefield effects in accelerating

structures [95] and in compact beam-driven acceleration schemes utilizing low-energy drive
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bunches.

Figure 4.10: Current profiles (a) and longitudinal phase spaces (LPS) (b) at the entrance
of the DLW structure (red traces) and at location of maximum compression (blue traces).
The simulation correspond to the case λ = 2.06 mm in Fig. 4.9. The inset in plot (a)
corresponds to a zoom of plot (a) around the ∼ 12-kA peak with its origin of the temporal
axis corresponding to z = 0.693 mm in plot (a) axial coordinate. Maximum bunching, in
this scenario occurs 43.9 cm downstream of the DLW.

It can sometime be more useful to compress a larger portion of bunch however. As

an example, we first consider a Gaussian bunch “tail-bunching,” where 4σz ∼ λ0/2. In

this regime, the rear half of the bunch acquires a quasi-linear negative chirp which leads

to a compression after a drift of proper length. In Fig. 4.11(left) we present results for a

DLW with dimensions (a, b) = (1 mm, 1.05 mm), relative dielectric permittivity εr = 5.7,

(corresponding to the fundamental-mode wavelength λ0 = 0.974 mm) and length L = 5 cm.

Such a configuration leads to ∼ 50% of the bunch population compressing into 100-µm

full-width spike.



80

Figure 4.11: Example of bunch-tail (left) and central (right) bunching. For each cases, the
current (top) and longitudinal phase space (bottom) are shown immediately downstream of
the DLW (red trace), and 1.2 m (left) or 1.13 m (right) downstream of the DLW (blue trace).

Another choice is to modulate the bunch in the regime where 4σz = λ0, so that the

largest concentration of charge (e.g., centrally for a symmetric bunch) is compressed. Again

we explore a Gaussian bunch, now with full bunch length 4σz ∼ 1.7 mm and a DLW with

dimensions (a, b) = (0.8 mm, 0.85 mm) which leads to λ0 = 0.887 mm. The length of the

structure is doubled to L = 10 cm for these simulations. In this simulation, a maximum of

55.8% is found in the 100-µm full-width spike 1.13 m downstream of the DLW; see Fig. 4.11
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(right). In principle this technique could also be scaled to longer wavelengths and bunch

lengths while increasing the bunch charge.

It should be noted that this technique relies on the non-ultra-relativistic nature of the

bunch and that the compressed bunch shapes presented in Fig. 4.11 are achieved at a given

axial location and are still evolving. In order to freeze the bunch shape, e.g. for use at

higher energy, the beam need to be accelerated and the DLW parameter would need to

be optimized to include the effect of downstream acceleration. Finally, a key feature to

the bunch compression is the local (or intrinsic) fractional momentum spread. As seen in

Fig. 4.11 (red traces in the longitudinal phase space), the slice energy spread depends on

the axial slice considered. Therefore, being able to control the slice energy spread at a given

axial location (i.e. that matches the zero-crossing in the correlated energy spread imparted

by the DLW) could lead to higher peak current containing larger amount of charge.

4.3.3 Shaping

As a final application we investigate the possibility of producing low-energy bunches with

linearly-ramped current profiles for beam-driven applications. We demonstrate that a stan-

dard Gaussian distribution typically produced downstream of an RF gun can be transformed

into a ramped bunch with quasi-linear dependency on z. We take the example of the S-band

gun considered in Sec. 4.3.1 and set L/λ1 ≈ 1/2 where L is the full longitudinal size of the

bunch upstream of the DLW structure. For these simulations, the axial-field amplitude at

the cathode is set to E0 = 140 MV/m. Such an increase (compared to the set of parameters

displayed in Tab. 4.1) was required to mitigate bunch lengthening. Figure 4.12 depicts the

LPS evolution and associated current profiles associate to the bunch as it enters (red trace),

exits (blue trace) the DLW and after a drift of 0.2 m (green trace). The interplay of the
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DLW wakefield and longitudinal-space charge force results in the appearance of nonlinear

correlations in the LPS. These nonlinearities provide some control over the current profile.

Figure 4.12: Current profiles (a) and longitudinal phase spaces (b) at the entrance (red
traces) and exit (red traces) of the DLW structure and 0.2-m downstream of the structure
(s ' 0.54 m from the photocathode surface) where a quasi-linear current profile is achieved
(green traces).

To quantify the performance of the current profile simulated in Fig. 4.12(b, green trace),

we compute its wakefield in a DLW with inner and outer radii respectively a = 165 µm,

b = 197 µm and the relative dielectric permittivity is kept to εr = 5.7. The resulting wakefield

behind the bunch has a peak accelerating field amplitude of E+ ' 60 MV/m; see Fig. 4.13.

The transformer ratio is numerically inferred as R ≡ |E+/E−| where E− ' 8.2 MV/m is the

maximum amplitude of the decelerating electric field within the electron bunch. The achieved

transformer ratio of R ' 7.3 is comparable to the ideal ratio of R = npπ ' 9.4 predicted

for an ideal linearly-ramped current profile (here np ' 3 is the number of mode wavelength

comprised within the total bunch length) [18]. Depending on the desired application, the

photoinjector settings and DLW parameters could be adjusted to produce a ramped current

profile after further acceleration in a subsequent linac.
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Figure 4.13: Longitudinal wakefield (blue trace) produced behind a bunch with the longi-
tudinal distribution (green trace) identical to the one shown in Fig. 4.12 [plot (a), green
trace] for a bunch charge of 1 nC. The structure used for the wakefield generation has the
geometric parameters a = 165 µm, b = 197 µm and εr = 5.7.

Finally, a finer control over the bunch shape could possibly be implemented using several

DLW structures with properly selected fundamental-mode wavelengths. Such a multifre-

quency DLW approach would be an extension of the scheme described in Ref. [96] to higher

frequencies.

4.4 SUMMARY

In summary, we presented a relatively simple technique to bunch non-ultrarelativistic

beams commonly produced by photoinjectors. The method is shown to support the genera-

tion of bunch trains consisting of sub-picosecond microbunches. Moreover, we demonstrated

that a DLW with a lower-frequency fundamental mode could act as a passive buncher and

produce multi-kA bunches. In addition, we discuss the application of the technique to form

bunches with linearly-ramped current profiles as needed to improve the transformer ratio in



84

beam-driven advanced-acceleration techniques. One of the main advantages of the method

is that it relies on the bunch interaction with its self-wakefields which are inherently syn-

chronized: the technique is therefore not prone to temporal jitter.

We expect the proposed method to find useful applications that span accelerator-based

compact THz-radiation sources, ultra-fast electron diffraction and in photoinjectors for short-

wavelength linacs.

It is also worth noting that the scheme could in principle be combined with other electron-

emission process (e.g. thermionic- or field-emission) but a detailed exploration is beyond the

scope of the present study.

Finally, other wakefield mechanisms, e.g., the use of a corrugated pipe [97, 98] could

provide an alternative to DLWs and also lead to similar results [99]. Our selection of a DLW

structure was mainly motivated by its manufacturing simplicity and wide use in advanced

accelerator R&D.



CHAPTER 5

APPLICATIONS

The techniques and schemes proposed in the previous section allows for some interesting

avenues to explore for applications ranging from acceleration to longitudinal shaping. In this

section we briefly explore more applications, namely the possibility of generating echo enabled

harmonic generation (EEHG) with successive DLWs at low energy, and also the possibility

of a compact X-ray source based on ballistic bunching and beam-driven acceleration.

5.1 THz via Echo-Enabled Harmonic Generation at Low-energy

Another interesting possibility to explore is echo enabled harmonic generation (EEHG).

In the conventional two-stage EEHG technique, an ultra relativistic electron bunch is energy

modulated with a laser in an undulator (the laser-undulator system is henceforth refered

to as “energy modulator”). The frequency of the modulation corresponds to the laser-

undulator resonant wavelength f
(1)
0 . The bunch then passes through another chicane to

locally over-bunch the beam, thereby producing a stratified longitudinal phase space. The

bunch subsequently interacts with a laser in a second energy modulator yielding the super-

imposition of an energy modulation with frequency f
(2)
0 . In the last stage of the process the

bunch passes through a chicane with R56 selected to form very short microbunches. The

frequency spectrum of the bunch is peaked at frequencies given by fm,necho = mf
(1)
0 +nf

(2)
0 with

n,m ∈ N.
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Here we note that a DLW structure with a proper fundamental mode can replace the

laser and undulator system in EEHG configuration albeit at the price of longer modulation

wavelength. We continue considering the setup described in this chapter and take the case of

a non ultra-relativistic bunch. In such a case, a drift space with proper length between the

modulators plays the same roles as the chicane in the conventional EEHG. We note that the

idea of using an EEHG scheme to micro bunch non-relativistic beams was recently proposed

in high-power W-band sources [100].

Considering the same configuration studied in the previous section, the ∼ 5 MeV bunch

produced by the RF gun is injected in two successive DLW structures. We choose the

fundamental frequencies of the first and second DLWs to be respectively f
(1)
0 = 0.6 and

f
(2)
0 = 0.4 THz. This choice corresponds to the parameters (a, b, ε, L) = (0.4 mm, 0.43 mm,

5.7, 10 cm) and (a, b, ε, L) = (0.5 mm, 0.55 mm, 5.7, 5 cm) for the first and second DLW

structures, respectively. The resulting longitudinal phase spaces and current densities are

shown in Fig. 5.1 and demonstrate the capability of the system to support a EEHG-like

harmonic bunching scheme.

The quality of the bunching can be further quantified by introducing the bunch form

factor (BFF) defined as F̃ (ω) = N−2|∑N
k=1 e

−iωzk/c|2 where the summation is carried over

the number of macro particlesN . The evolution of F̃ (ω) as a function of the distance from the

exit of the second DLW is shown in Fig. 5.2 for the same case as the one presented in Fig. 5.1.

The BFF is enhanced at f
(2)
0 and its second harmonic at 0.8 THz. In addition we observe

peaks at “echo” harmonics appearing as “islands” located at 1, 1.4, and 1.8 THz in Fig. 5.2.

These frequencies are given from the ”echo” unconverted frequency fm,necho = mf
(1)
0 + nf

(2)
0

with m = 1 and n = 1, 2, 3 respectively.
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Figure 5.1: Generation of EEHG with two DLWs: A plateau distribution is shown immedi-
ately before (red trace) and after (blue trace) passing through a DLW with f

(1)
0 = 0.6 THz

(top left). A snapshot of the bunch after a 1.6 m drift (top right) before entering the second

DLW with f
(2)
0 = 0.4 THz. Finally, the bunch is shown immediately after the second DLW

(lower left), and after a 25 cm drift (lower right). In each figure the longitudinal phase space
and current distributions are shown (as lower and upper sub-plots respectively).

Figure 5.2: BFF evolution downstream of the second DLW for the same configuration as
presented in Fig. 5.1.
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5.2 Compact X-ray source

Modern accelerator-based X-ray sources have led to a wave of scientific advancements

in various fields. Their inception relies primarily on energetic electrons which are manip-

ulated to radiate either via undulators or inverse Compton scattering (ICS). In both ra-

diation mechanisms the photon energy O(γ2), therefore an increase in the beam energy is

significant. Recently, compact X-ray sources based on X-band RF technology has been pro-

posed [101]. Likewise an X-ray source utilizing laser-plasma wakefield accelerator have been

demonstrated [102]. Finally, most recently the possible use of a THz pulse to accelerate

electron bunches have been put forward [103] and tested [104]. These solutions, although

appealing, are either costly (X-band technology) and/or require the use of high-power lasers

currently operating at low repetition rates.

Figure 5.3: Overview of the compact source scheme: a photoinjected electron bunch passes
through a series of DLWs for cascaded acceleration,the resulting high energy electrons are
used with a laser to generate inverse Compton scattering.
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Two practical challenges emerge for beam-driven acceleration at low energy. First, the

geometric emittance associated to a low-energy photoinjected electron bunch sets an upper

limit on the inner radius a and length L of the DLW structure. Second, the scheme relies on

the production of a high-peak-current electron bunch along with the formation of a witness

bunch.

To address some of these challenges, we propose an accelerator setup diagrammed in

Fig. 5.3 based on a ”cascaded acceleration” scheme. A high-quality electron bunch is pro-

duced in an RF gun and focused into a DLW structure (DLW1). The structure passively

bunches the beam which can then be used to drive a large gradient wakefield in a second

DLW structure (DLW2).

5.3 Cascaded Acceleration

Let us now consider the use of two DLWs in series to accelerate a low energy (e.g.

< 10 MeV) electron bunch. In this scheme, the first DLW is used to impart an energy

modulation which leads to ballistic bunching as discussed in Ref. [105]. In this section we

carry simulation of the beam dynamics considering the LCLS S-band gun operating with a

peak surface field on the photocathode of 140 MV/m. Table 5.1 summarizes the accelerator

settings employed. The large peak field helps preserve high-charge densities (especially peak

current) which eventually results in higher transformer ratios. Our studies focus on the case

of 2-nC bunch charge and it is important to note that this technique is very scalable to

larger charges and wavelengths. The simulation was carried with astra which is described

in 2.The Green’s functions used in the wakefield calculations are computed using the six

lower-frequency modes supported by the DLWs following the methodology of Ref. [6].
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Table 5.1: Accelerator beamline settings and DLW parameters used in the astra simula-
tions. The relative modes amplitude are normalized to the square sum of the amplitudes.

parameter value units
laser pulse RMS duration 2 ps
laser RMS spot size 1.3 mm
initial charge 2 nC
peak field on cathode 140 MV/m
average energy 7.01 MeV
DLW1 parameters:
relative permittivity 5.7 −
position 0.6 m
length 10 cm
inner radius 0.8 mm
outer radius 1 mm
mode wavelengths 2.19, 0.72, 0.41 mm
relative mode amplitudes 1, 0.51, 0.23 −
DLW2 parameters:
relative permittivity 5.7 −
position 1.7 m
length 8 cm
inner radius 0.5 mm
outer radius 0.55 mm
mode wavelengths 0.74, 0.19, 0.11 mm
relative mode amplitudes 1, 0.23, 0.07 −

5.3.1 Ballistic bunching using a DLW

A critical component to high-gradient wakefield acceleration is the requirement for a

high-peak-current bunch. The needed currents are typically one order of magnitude larger

than those typically produced downstream of an RF gun. Several bunching techniques could

be employed but given our requirement for compactness and limited use of external power,

we use a passive ballistic bunching method based on a DLW structure as investigated in

Ref. [24]. The parameters of the first structure (see DLW1 in Tab. 5.1 are chosen to ensure the
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relative amplitude of the first three modes are significant > 0.1 and the fundamental-mode

wavelength (2.19 mm) approximately corresponds to the total bunch length. Additionally,

the radius of the aperture (1 mm) is large enough to allow for the electron beam to be

fully transmitted. This wavelength choice together with the presence of significant higher-

order mode confer to the longitudinal phase space a square-waveform; see Fig. 5.4. During a

Figure 5.4: Longitudinal phase spaces (b) and current projection (a) before (red) and after
(blue) DLW1 (with parameters listed in Tab. 5.1). The tail of the bunch corresponds to
z < 0.

subsequent drift where ballistic bunching is at play, the center of the bunch will be compressed

while the head and tail of the bunch will experience minor longitudinal displacements. The

current profile immediately downstream of the DLW already shows sign of this ”differential”

compression: its center population has its peak current enhanced from ∼ 150 to ∼ 250 A;

see current profiles in Fig. 5.4.

5.3.2 Acceleration with compressed bunch

Downstream of DLW1, the ballistic bunching occurs over a free-space drift of 1.1 m.

The optimum locations and parameters of the following structure (DLW2) was empirically

optimized to maximize the final energy of accelerated electrons in the tail. Finally, it should

be noted that the evolution of the longitudinal phase space generates current profiles with
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complicated shaped which can be used in combination with multi-mode DLW structures

to support higher transformer ratios. This ultimately increases the maximum beam energy

which can be transferred from the bunch center to its tail.

Given the large parameter space constrained by these dynamical processes, we only

present one optimal case devise via empirical optimizations. A more comprehensive study

would undoubtedly lead to higher performances and will be carried with the help of a genetic

optimizer. Our trial-and-error approach consisted in varying the structure parameter and

its location, compute the produce wakefield and parameters that maximize the transformer

ratio. An example of generated current profile (green trace) and associated wakefield (blue

trace) appear in Fig. 5.5. The transformer ratio R ' 2.8 is modest but the peak accelerating

field experienced by electrons in the bunch-tail are on the order of 100 MV/m. The structure

Figure 5.5: Longitudinal wake generated at the location of the second DLW (blue trace)
from corresponding current (green trace). The tail of the bunch corresponds to z < 0.

parameters are gathered in Tab. 5.1. Compared to DLW1, DLW2 radius is twice as small

and the dielectric-liner thickness is 50 µm resulting in a fundamental mode with wavelength

∼ 3 times smaller. The small wavelength produces a modulated longitudinal phase space;

see Fig. 5.6 (b). The modulation amplitude is comparable to the beam energy and results

in highly nonlinear phase space distortions. The maximum energy reached by the electron

in the tail is in excess of 12 MeV while the decelerated electrons have energies down to
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Figure 5.6: Longitudinal phase space (b) and current projection (a) of before (red) and after
(blue) cascaded acceleration. The tail of the bunch corresponds to z < 0.

∼ 3 MeV. Other results showed larger final energies with correspondingly small decelerated-

electron energies where dynamical wakefield effects would occur; a self-consistent particle

tracking code would be necessary to investigate the properties of the bunch as it becomes

non-relativistic.

5.3.3 Selection of accelerated population

Compared to a conventional drive-witness bunch, the scheme described in this section

uses part of the drive bunch to accelerate its trailing population rendering the final step

of extracting the accelerated beam more intricate. Here we mentioned to possible selection

processes. A first approach consists in placing a small dispersive section downstream of the

DLW2 combined with a collimator. A second approach makes use of chromatic effects to

differentially focus the accelerated population and defocus the rest of the beam. Both ap-

proaches are under consideration and their compatibility with high-repetition-rate operation

needs to be fully assessed.
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5.4 Experimental investigation of THz-pulse propagation in a

slab-symmetric dielectric structure

Throughout this dissertation we have discussed beam-driven approaches to drive large

electromagnetic wakes in DLWs at the THz-scale. The recent development of semi-efficient

(1%) laser-based THz sources (100-700 GHz) however, has opened the door to the devel-

opment of THz-driven linacs [106, 107, 108, 109]. In this scheme, a radially-polarized THz

pulse is co-propagated with an electron bunch in a dielectric-lined waveguide (DLW) with

optimized geometry; THz pulses with mJ energies can support accelerating fields on the

order of GV/m. The THz-pulse is also matched to the structure thereby mitigating possi-

ble excitation of spurious modes (e.g. dipole modes often excited in beam-driven schemes

dielectric-wakefield acceleration [110].

In this section we cover the development of a compact laser-based THz source at the A0

photoinjector laser room. The THz generation scheme is based a tilted-wavefront approach at

room temperature. The goal was to characterize a slab-symmetric DLW using electro-optic

sampling.

5.4.1 Simulation and Analysis of a THz pulse propagation in a

SLAB DLW

To assess the performance of the described experimental setup we modeled the propaga-

tion of a THz pulse through the DLW and use these numerical results to develop analysis

tools. It is useful to investigate the dispersion relations of the structure as well, as described

in 2; see Fig.5.7. The simulation of a THz pulse through the DLW were performed using
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Figure 5.7: Dispersion relation associated to the LSM modes in a slab-symmetric DLW with
parameter a = 100 µm and b = 120 µm. The red diagonal line correspond to kz = ωc.

the program vorpal. Vorpal uses the conformal finite difference time domain (CFDTD)

method to solve Maxwell’s equations. The geometry of the problem simulated with vorpal

appears in Fig. 5.8.

Figure 5.8: A diagram of the slab from the x-transverse direction (a) and the from the
z-longitdinal direction (b). The slab is composed of a dielectric coating with dielectric per-
mitivity εr surrounded by a perfectly conductive boundary (PCB). In the vorpal simulation,

we inject the THz pulse using a current ~J to drive a short pulse in z. Lastly, to remove re-
flections and to artificially produce the pulse leaving the structure we implement a perfectly
matched layer (PML). We record the signal on axis, near the PML.

A THz pulse is launched on the first x=0 grid plane:(0:NX ,0:NY ,0:NZ=1) with current:

~Jz = A0t sin(2πf1t) sin(2πf2t) sin(2πf3t)exp(−(t−TPEAK)2/(FWHM2)). The driven fre-

quencies correspond to (f1, f2, f3) = (0.8, 1.0, 1.2) THz, TPEAK = 2 ps, and FWHM =

1 ps. Although the pulse peaks in frequency-intensity near the driven fn, its shortness in

time also helps excite higher frequencies and modes. The electromagnetic field of the guided

pulse are recorded on a two-dimensional grid-line as a function of time at the entrance
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Eu(x, y = 80 µm, z = 0, t) and at the exit Eu(x, y = 80 µm, z = 2 cm, t) (where u ∈ [x, y, z]

corresponds to the three field components).

Figure 5.9: Fourier transform of the pulse at the entrance of the structure |Ey(x = 0, y =
80 µm, z = 0, f)| (top) and a Fourier transform of the pulse at the end of the structure|Ey(x =
0, y = 80 µm, z = 2 cm, f)| (bottom).

The fourier transform of the pulse before and after propagating through the structure

gives us a partial understanding of the propagation of the modes through the structure.

The surviving frequencies correspond to the eigenmodes of the structure. And the frequen-

cies which have faded correspond to the evanescent decay of non-eigenmodes through the

structure.

Fig. 5.9 shows the Fourier transform of the +ŷ component at the entrance and exit of the

structure. The varying horrizontal frequency content of the pulses is due to the difference in

the mode’s spatial distributions.



97

Morever, the slopes of the modes in Fig.5.7 correspond to the respective mode’s group

velocity for a particular frequency. If we assume all of the modes are driven simultaneously

at t=0, we can deduce the temporal spacing of the modes at the end of the structure.

We import the signal recorded at the end of the structure into another program for

temporal-spatial anaysis. For each gridpoint recorded on the transverse line at the exit of the

structure, we use a moving window to scan through the signal temporally. At each window

step, we perform a Fourier transform and plot the coefficient strength of the frequency of

interest. To reduce any unwanted artifacts from sharp edges in the Fourier transforms, we

apply a Hann window defined via: w(n) = 0.5
(
1− cos

(
2πn
N−1

))
for an individual point n, of

N sampled points.

In Fig. 5.10 we show results for the 1.4 and 1.8 THz components of the frequency-time

maps after passing through the slab structure. Using this method, and comparing to the

dispersion curve above, we can confirm the propagation of the LSM2m and LSM3m for the

1.4 THz component as well as the propagation of the LSM2m, LSM3m, and the near cutoff

region of the LSM4m which explains its tardiness passing through the structure.

5.5 Experimental setup

We use a broadband δλ ' 100 nm Ti:Saph commercial laser system centered at 800 nm.

The“Octavius” oscillator is pumped with 532 nm ∼ 5 W CW laser and is modelocked to

81.25 MHz which is the 16th subharmonic of the 1.3 GHz master oscillator at the A0 pho-

toinjector. The laser passes through a “Dazzler” phase-shaper which is useful for controlling

the chirp and broadband width for the amplifier. The laser is then regeneratively amplified

over ∼ 7 passes to ∼ 4 mJ before being released via a voltage controlled switch (i.e. Pockels

cell); see Fig. 5.11 for a schematic of the A0 laser lab.
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Figure 5.10: Frequency-time maps for the 1.4 THz (top) and 1.6 THz (bottom) components
of the signal transmitted through the structure.

For THz generation we use a phase-matched optical rectification approach using the

tilted-wavefront approach with a wedged crystal [106, 111]. Due to the large dispersion from

the grating with our broadband laser, we use a telescope to reduce the initial beam size by a

factor of ∼ 2. We then use a beam splitter to send 5% of the beam through a delay line. The

remaining majority of the laser beam impinges on a holographic grating with 1800 lines/mm

to generate an initial tilt; we operate the grating near its blaze angle to maximize efficiency.

The diffracted beam is relayed through a combination of cylindrical and spherical lenses

which control the final spot size and tilt-angle into a stoichiometric MgO(0.6%):LiNBO3
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Figure 5.11: Schematic of the A0 laser system. A Ti:Saph “Octavius” laser oscillator outputs
81.25 MHz 150 fs pulses and is regeneratively amplified to ∼ 4 mJ per pulse. The amplified
laser is used to generate photoelectrons and also in our laser-based THz-generation scheme.

crystal with dimensions 5x5x9.81 mm. The THz is then transported through a 4-F system

designed to allow an insertable target (e.g. DLW). The THz and probe beam are finally

recombined into an electro optic (EO) crystal which is sensitive to the electric field of the

THz pulse (see Fig. 5.12); when the two beams arrive simultaneously in the EO crystal, the

electric field can be mapped into a polarization rotation of the probe beam. Finally, the use

of a polarizer to reject the original polarization of the probe beam can be used to convert the

polarization rotation into an intensity modulation on an e.g. diode. The two beams were

first temporally aligned using a fast scope with a fast diode; the probe beam and IR leaking

from the THz-crystal were placed on the diode and a polarizer was used to make both signals

have similar amplitude. When we were satisfied with the temporal alignment of the beams

on the scope, we placed a thin polyethylene IR filter after the THz generation; the filter does
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not reduce the amplitude of the THz pulse but does delay it. Knowing the direction of delay,

the probe pulse was then accordingly scanned with a delay stage to finally recover the EO

signal. We note we did not use balanced detection and therefore our results below may not

represent the true waveform [112]. The experiment was operated at 1 Hz to reduce jitter;

this stems from the A0 photoinjector system which follows a 1 Hz repetition rate, and Servo

controller was used to phase lock the laser system with the diode trigger. The diode signal

was sent to a digitizer which was accessible to the A0 control room computers, the delay

stage was also operated from the control room computers to make data taking relatively

simple. A slab-symmetric DLW with dimensions 2x1 cm with 20 µm thickness was placed

at the interaction point; its aperture was controllable with a manual stage.

BS1 

M1 M2 

M3 

P1 

P2 P3 

P4 

DLW 

G1 
CL1 

M5 

SL1 

CL2 

LN to detector WP1 GP1 

GP2 WP2 

T1 

Figure 5.12: Experimental setup; an 800 nm laser comes from the right onto a beam splitter;
95% is used for the tilted wavefront THz generation; the rest of the beam passes through a
delay stage before being recombined for EO detection.
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5.6 Preliminary experimental results

The first result stems from the temporal alignment of the probe and THz pulse into the

EO crystal. The autocorrelation of the two pulses through the crystal converts the electric

field of the THz pulse into an intensity modulation as a function of delay; see Fig. 5.13.

Figure 5.13: Data of the unbalanced EO detection (left) and its corresponding spectrum
(right).

Next we investigated the dispersion in a slab-symmetric structure with different apertures.

We present experimental results for inner gaps of 1.5 mm and 2 mm in Fig.5.14; the results

indicate that the smaller aperture sizes lead to slower group velocities in the structure. A

difficulty of this scheme is the difference of the THz-beam path with and without the DLW

structure present; this ultimately leads to the smaller amplitude signal for EO detection.

5.7 THz-based electron gun

Although conventional electron sources are often used to investigate the performance of

advanced acceleration concepts [113], their adaptation to serve as an injector for an optimized

advanced accelerator remains challenging. Instead several groups have developed short-pulse
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Figure 5.14: Unbalanced EO signal as a function of probe delay in mm. We show two inner
gap results of 1.5 mm and 2 mm where there is noticable slower group velocity in the smaller
structure.

electron sources, e.g., based on dielectric grating [114], free-space THz streaking [115, 116],

or the proposed optically driven dielectric-waveguide sources [117]. Unfortunately, electron

sources using an optical wave are typically limited in the charge they can produce since

space charge is predominant at low energy and needs to be mitigated. For instance at

λacc = 800 nm, a typical bunch length of a few nm would be required which would result

in peak current, Qc/(2πλacc ≥ 6 kA for a 1 pC bunch charge (here c is the light velocity).

Alternatively, using a THz pulse with λacc=100 µm would result in a peak current on the

order of 50 A (taking σz ' 10−2λacc ' 1 µm). The latter value is consistent with values

typically achieved in conventional photoinjectors, see Ref. [118] for example. Likewise, the

trade-off between electron bunch length and charge could enable the production of higher

charge (up to 100 pC) in exchange for longer bunches.

A conceptual schematic of this low-energy electron source, henceforth dubbed “THz-

gun”, appears in Fig.. 5.15: two thin dielectric surfaces deposited on a metallic substrate (or

free-standing with metalized outer surfaces) are faced to each other. The vacuum gap g(z)

between the surfaces is a function of the axial position z (coincident with the direction of

propagation of the electron bunch).
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Figure 5.15: Section, top view and side view (respectively on top, bottom left and top right)
of the proposed “THz gun” electron source.

The function g(z) is tailored to insure the phase velocity of the injected THz wave matches

the electron beam’s velocity thereby resulting in a quasi-monotonic energy transfer from the

THz wave to the electron bunch. Ideally, the phase slippage between the wave and beam

can be suppressed. In this paper we focus on a slab DLW as its tapering is practically easier

to realize.

5.7.1 Dispersion Controlled Acceleration

A very real problem with low-energy acceleration is phase slippage–where a mismatch

between the accelerating phase of the electromagnetic wave and electron bunch velocities lead

to poor energy gains. This problem can be mitigated by using large accelerating gradients

with relatively long electromagnetic wavelengths like photoinjectors, where electron bunches

typically sample a small portion of the wavelength. Considering the high frequencies of the

THz regime, a correspondingly powerful driving pulse would be necessary appropriately scale

the conventional photoinjector scheme which may be difficult.
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Let us imagine an alternative: developing a longitudinally-asymmetric structure whose

dispersion relations will lead to phase and group velocities that will match the velocity of

an accelerating electron bunch. To give primitive insight into this possibility, we consider a

the dispersion relations for the LSM modes detailed in 2.

Figure 5.16: A transverse view of a dielectric loaded waveguide (DLW).

Figure 5.17: A transverse view of a dielectric loaded waveguide (DLW).

The equation of motion for an accelerating charge is given by

z(t) =
1

qE

√
(cqEt)2 + E2

0 , (5.1)

here q is the charge, E is the electric field magnitude, and E0 is the initial starting energy

(including rest mass).
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Next we numerically explore the range of the fundamental accelerating mode (LSM11)

over the range kz = ω/(̇z(t)) of one accelerating electron and look for solutions as a function

of inner radius. To do this we need to hold constant several parameters (see Tab. 5.2).

Table 5.2: Parameters associated to single and multi-mode structure for central-bunching.

Parameter value Units
electric field (E) 100 MV/m
frequency (f) 300 GHz
thickness (t) 30 µm
open gap (b) 1 cm
relative permittivity 5.7 −

Figure 5.18: The inner radius of the structure shown as a function of longitudinal coordiante
for the numerical solution discussed above.

5.8 Conclusion

The ”cascaded acceleration” technique proposed in this contribution seems promising. Its

main advantage is the low amount of RF components. The scheme still has several challenges

to overcome before its viability is fully assessed. These challenges include investigating

the scaling between bunch parameters (e.g. charge, laser spot size etc) with appropriate
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choice of RF-gun, the investigation of transverse emittance growth, the improvement of

transformer ratio (possibly using shaped photocathode laser as explored in Ref. [119]), and

the investigation, via start-to-end simulation of possible options to select the accelerated

population of the bunch (for further use in an inverse Compton scattering process). In

addition, we have recently implemented the simulation in a particle-in-cell finite difference

time-domain model based on warp to confirm the preliminary work carried with astra.

Finally, the operation of the proposed compact accelerator at high-repetition rates (limited

by the RF gun) will have to be explored. Finally we primitively explored the possibility

of generating a tapered structure to lock the phase velocity of laser-generated THz pulse

in a structure with an accelerating electron. Our theoretical results indicate it may be

possible to generate such a structure by varying the gap and dielectric thickness size along

the longitudinal axis of the structure. We also discuss our first experimental results of a

laser-based THz generation scheme and our measurement of dispersion in a slab-symmetric

structure.



CHAPTER 6

CONCLUSION

Next generation colliders and and light sources will require high energy electron beams

which will either require significant increases in footprints based on conventional acceleration

approaches (e.g. RF-based), or require alternative acceleration techniques. One approach we

have discussed is beam-driven acceleration using dielectric-lined waveguides (DLW) which

are capable of sustaining significantly larger accelerating fields (E+O(GV/m)). Additionally

DLWs are relatively inexpensive compared to conventional RF technology.

An important figure of merit in beam-driven acceleration is the transformer ratio R

which is proportional to the efficiency of acceleration and depends exclusively on the lon-

gitudinal current profile of a drive bunch. While several longitudinal current profiles had

been suggested to produce large R and E+, the discontinuous nature of proposed profiles

are experimentally challenging and required advanced beam manipulation techniques and

transverse masks. We proposed several new smooth longitudinal current profiles as well as

two new shaping techniques which could support high-repetition rate machines based. In

the first technique was experimentally demonstrated at the FLASH facility and is based on

using a 3.9 GHz linearizer to impart an energy modulation to generate an asymmetric and

transformer enhanced drive bunch. In the second proposed technique, we showed that a

longitudinally shaped laser pulse could be used to generate the quadratic-ramp distribution

we discovered.

We also discussed the use of DLWs for ballistic bunching and beam-manipulation. Gen-

erally bunch-compression is done using a magnetic chicane which requires an initial energy

chirp, or via ballistic bunching where usually an RF field operated at 0-crossing imparts a
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linear field across the bunch; at low energy this leads to compression over a drift. We pro-

posed the use of a DLW to impart an energy chirp directly from the self-wake of a bunch; as

shown through calculations, this technique is quite feasible for low-energy bunches (¡ 10 MeV)

with peak-currents of ∼ 100 A (corresponding to 1 nC bunches form a photoinjector). This

technique could be very useful for electron diffraction for example.

We also looked at alternative applications using DLWs for compact X-ray sources and

possibly EEHG at low-energy. In the former scheme, we proposed the use of two DLWs; the

first to generate ballistic bunching to increase the charge density of the bunch for a DWFA

scheme in a second DLW. The technique could in principle increase the beam energy by a

factor of R and possibly generate X-rays with the inclusion of a laser for inverse compton

scattering. Moreover we looked at the use of DLWs and drifts to replace energy modulators

and chicanes respectively in a conventional EEHG approach. This technique could in prin-

ciple also work well at low energy to generate THz radiation from photoinjected bunches.

Finally we briefly discussed the possible use of DLWs as an electron gun (a THz-gun) based

on a laser-driven THz source. At low energy an accelerating electron in a single-cycle THz-

pulse will incur a large phase-slippage from mismatches in phase velocity of the travelling

mode and its increasing velocity. We briefly investigated the possibility of a longitudinally

tapered DLW to match the phase acceleration of the mode with the accelerating electron

bunch.
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A.1 Introduction

The development of computational power in the past several decades has led to our

capability to solve complicated problems numerically, which would otherwise be very difficult

or impossible.

The rapid pace at which processor architecture evolves must be matched with improve-

ments in program/software design to take advantage of the full capability of a processing

unit. The most recent development include the deployment of hardware with large numbers

of Graphical Processing Units (GPU). GPU’s and their highly parallel structure makes them

more effective than general-purpose Central Processing Units (CPUs) for algorithms where

processing of large blocks of data is done in parallel.

Although a CPU is faster than a GPU on a per-core basis, each GPU may contain several

thounsand cores [120] while each CPU is presently limited to 16 cores [121]. Moreover,

GPUs are capable of processing many parallel streams of data simultaneously which makes

them highly efficient for parallel computation. Finally GPUs are capable of performing

vector operations and double-precision floating-point numbers, which makes them useful in

electromagnetic simulations such as Vorpal [51].

vorpal is a three-dimensional electromagnetic and electrostatic PIC code. Vorpal

uses a conformal finite difference-time domain (FDTD) method to solve Maxwell’s equations

and that includes an advanced technique known as cut-cell boundaries to allow accurate

representation of curved geometries within a rectangular grid.

To test the scalability of vorpal-GPU on a recently acquired TOP1000-grade hybrid

GPU/CPU, “Gaea,” we use a familiar problem on collinear beam driven wakefield acceler-

ation. The Gaea computing cluster at NIU includes 60 compute nodes with 3 additional

nodes to handle disk and terminal services. Each compute node contains 2 hex core CPUs
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(Intel Xeon X5650 opearting at 2.67 GHz), 72 GB of RAM, 2 TB of local storage and 2

GPU cards. Each GPU card is an nVidia Tesla M2070 capable of 515 Gigaflops of

double precision floating point arithmetic, 1030 Gigaflops of single precision floating point

arithemetic, each GPU card has 448 CUDA cores, with access to 6 GB of GDDR5 memory,

and 150 GB/s memory bandwidth. The cluster also possesses approximately 192 TB of disk

storage accessible to all compute nodes. Lastly, the compute nodes and storage nodes are

interconnected with a 40 Gb/s QDR Infiniband network.

A.2 Problem Setup

We explored the scaling of a dielectric wakefield accelerator (DWFA) simulation using

vorpal-GPU. In DWFA’s a drive bunch is used to excite an electromagnetic wake in a

dielectric-lined waveguide (DLW). The trailing wake can be used to accelerate a properly

timed witness bunch. Currently Vorpal-GPU does not support particle-in-cell functional-

ities, instead the electron bunch is modeled by the time-dependent current density

~J(x, y, z, t) =
cQ (2π)−

3
2

σxσyσz
e

(
− z2

2σ2z
− y2

2σ2y
− (x−ct)2

2σx

)
x̂, (A.1)

where the charge Q = 1 nC, the transverse sizes are σx = σy = 30µm, the longitudinal size

is σz = 100µm and c is the speed of light.

The computational domain associated to the problem appears in Fig. A.1. The current

distribution enter the computation domain from x = 0 time t = 0 and propagates through

the structures until it exists on the x > side. The boundaries on the y and z sides are

perfectly conducting boundary (PCB) to mimic the conducting plates surrounding the DLW.

In addition, perfectly matched layers (PMLs) are use on both ends (x) of the structure to
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mimic an open boundary and avoid spurious reflection of the electromagnetic field generated

by the current distribution.

Figure A.1: A diagram of the slab seen from the y-transverse direction (a) and the from
the x-longitdinal direction (b). The slab is composed of a dielectric coating with dielectric
permitivity εr surrounded by a PCB. In the VORPAL simulation, we use a wave launcher
to drive a short pulse in z. Lastly, to remove reflections and to artificially produce the pulse
leaving the structure we implement a PML. We record the signal on axis, near the PML.

In this problem, Maxwell’s equation where solved using vorpal’s FieldCombo algorithm

and because of the dielectric medium the updated included the construction and update of

the ε permitivity matrix necessary to define and update the ~D electric-displacement field

components.

A.3 Scaling studies

In high-performance computing, there are generally two figure of merits used to describe

scaling performance: the strong and weak scalings. Strong scaling refers to how the solution

time changes for a parallel computation with a fixed computational volume. Weak scaling

refers to how the solution time changes for a fixed parallel computation with different com-

putational volumes. With respect to vorpal-GPU, we are interested in knowing the cost

of the solution time per processor(s) for an increase in resolution (finer grid).

A larger number of processors will not necessarily decrease the solution time; instead

this relationship depends on many factors and is problem specific. Examples of such factors
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include, e.g., (i) increase in time to split the jobs to more cores (ii) increase in time to send

information to more cores (iii) increase in time to allocate less memory to more cores (iv)

and the finite bandwidth available to communicate between the cores.

In vorpal-GPU we use a cartesian grid (NX , NY , NZ) to describe number of cells in

x̂, ŷ, ẑ directions (see Tab. A.1). To improve the scaling capability, it was important to choose

the decomposition of the grid wisely.

The simulation was designed such that the electron bunch propagation direction was in

the long, longitudinal direction of the simulation (x̂). This was a convenient choice which

enabled several clear benefits. First it allows for a simple one dimensional decomposition of

the gridded field quantities. This leads to a simple messaging pattern of the quantities in the

halo–that is each GPU sends and receives data only from the other GPUs on each side of the

decomposition This choice leads to a minimization of the messaging costs leading to optimal

efficiency. Moreover, VORPAL-GPU is designed such that the x-dimension represents the

slowest dimension in the memory layout of the field quantities while the z-dimension is the

fastest. This is a very important choice which enables contiguous chunks of memory in the

planes perpendicular to the x-axis (i.e. the halo guard cell planes) to be transferred back to

the host in a single memory transfer across the PCI Express bus. This yields the optimal

performance as it enables one to effectively overlap communication costs with the update of

the main ”body” region on each GPU.

However, one must also be careful to choose the dimensions of the simulation domain

carefully. Even a simple one-dimensional domain decomposition can perform poorly if the

ratio of the cells needing to be messaged to the cells needing to be updated in the body

region is too large.

Because we decompose in the x̂ direction, our message volume will be 2NYNZ . For

a problem involving N GPUs, our update volume will be NXNY NZ
N

. When 2NY NZ
(NX∗NY ∗NZ)/N

becomes large (i.e. greater than .02 we expect the performance to degrade substantially. In
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these situations, the amount of work in the body update region will be too small to effectively

hide the communication costs. In particular, the body update region kernels will simply run

too fast to hide these costs.

Table A.1: Cartesian grid dimensions and volumes used in this scaling study.

Size NX NY NZ Volume

S 602 128 128 9863168
M 1552 256 256 101711872
L 7752 256 256 508035072
XL 3852 512 512 1009778688
XXL 7702 512 512 2019033088
XXXL 5002 768 768 2950299648

Figure A.2: Strong and weak scaling of vorpal-GPU on Gaea. On the horizontal, N GPU
refers to the number of GPUs used for a given simulation (see below for list). The vertical
axis shows the inverse of the time per step.



125

We investigated the scaling over 1, 2, 4, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120

GPUs. However, because of the limited memory on each GPU, larger problems cannot run

on a smaller number of GPUs. The results are presented in Fig. A.2. In each case, several

hundred steps were taken and we use the minimum time per step; an alternative method

would be to take the average time per step over the run sample, however the loading and

dumping time of the larger volumes skews this data significantly. In this figure, the volume

curves represent the strong scaling, while the weak scaling is presented by the different

volume sizes for a fixed number of GPUs (i.e. vertical points). We see linear scaling up to

certain numbers of GPUs for each volume, afterwhich it falls off. The fall off comes from the

aforementioned changing update and communication volume ratios.

A.4 Comparison and Conclusion

For comparison we benchmarked vorpal-GPU with an analytical model based on

Ref. [9, 10]. We see very good agreement and notice convergence of better resolution to-

ward the analytical model (see Fig. A.3). We also confirmed accordance between both gpu,

and cpu versions of vorpal.

Some of the transverse and longitudinal characteristics of the wakefields produced in these

simulations are nearly impossible to see at low resolution, therefore the powerful capability of

vorpal on Gaea, allows us to potentially do optimization studies due to the small runtimes

needed for large scale problems (see Fig. A.4.

The next decades in computational development, both in hardware and software will lead

to faster, more powerful computation capabilities; which, will make possible the optimization

of large scale problems and large data analysis.
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Figure A.3: Comparison plot between vorpal-GPU and an analytical code. The small and
medium volume sizes correspond to the first two volumes in Tab. tab:gridsize. The structure
has dimensions a = 100µm with b = 120µm with ε = 5.7.

Figure A.4: A contour plot of the simulation carried out with vorpal-GPU shown from a
slice in z=0 plane on a L grid volume. A gaussian bunch (1nC, σx = 100µm passes through
a dielectric structure exciting a wake. The transverse-extended shape corresponds to the
combination of the LSE and LSM modes. The peak accelerating field (blue) corresponds to
150 MV/m. The structure has dimensions a = 100µm with b = 120µm with ε = 5.7.

We are thankful to Dr. Clyde Kimbal for his support and Dave Ulrick for his help with

the gaea cluster.
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